BIBLIOGRAFÍA
*Abt M. and Welch W.J. (1998). Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes. The Canadian Journal of Statistics, 26(1), 127-137.
*Agin M. and Chaloner K. (1999). Optimal Bayesian design for a logistic regression model: geometric and algebraic approaches. Multivariate analysis, design of experiments, and survey sampling, Dekker, New York, 609-624.
*Atkinson A.C. and Bogacka B. (1997). Compound D- and Ds-Optimum. Designs for Determining the Order of a Chemical Reaction. Technometrics, 39(4), 347-356.
*Bischoff W. (1993). On D-optimal designs for linear models under correlated observations with an application to a linear model with multiple response. Journal of Statistical Planning and Inference, 37, 69-80.
*Bischoff W. (1995). Determinant formulas with applications to designing when the observations are correlated. Ann. Inst. Statist. Math., 47, 385-399.
*Chaloner K. and Larntz K. (1989). Optimal Bayesian Design Applied to Logistic Regression Experiments. Journal of Statistical Planning and Inference 21, 191-208.
*Chaloner K. and Verdinelli I. (1995). Bayesian Experimental Design: A Review. Statist. Sci. 10(3), 273-304.
*Chernoff H. (1953). Locally optimal designs for estimating parameters. The annals of mathematical statistics, Vol. 24, pp 586-602.
*French S. and Ríos-Insua D. (2000). Statistical Decision Theory. Edward Arnold. London.
*Gagnon, R. C. and S. L. Leonov (2005). Optimum population designs for pk models with serial sampling. Journal of Biopharmaceutical Statistics 15, 143–163.
*Kackar, R. N. and Harville, D. A. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association, 79, 853-862.
*Kenward, M. G. and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood, Biometrics, 53, 983-997.
*Kenward, M. G. and Roger, J. H. (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood, Computational Statistics and Data Analysis, 53, 2583-2595.
*López-Fidalgo, J. and Rodríguez-Díaz J. M. (2004) Elfving method for m-dimensional models. Metrika 59(3), 235-244.
*López-Fidalgo J, and Wong W.K. (2002). Design Issues for the Michaelis-Menten Model. Journal of Theoretical Biology, 215(1):1-11.
*McCulloch C.E. and Searle S. (2001). Generalized, Linear and Mixed Models. John Wiley and Sons. New York.
*Mentré, F., A. Mallet, and D. Baccar (1997). Optimal design in random-effects regression models. Biometrica 84(2), 429–442.
*Müller W.G. and Pázman A.(1999). An algorithm for the computation of optimum designs under a given covariance structure. Computational Statistics, 71(2) (1999), 197-211.
*Müller W.G.and Pázman A. (2003). Measures for designs in experiments with correlated errors. Biometrika, 90(2) (2003).
*Müller W.G. and Stehlík M. (2004). An example of D-optimal design in the case of correlated errors. Proceedings in Computational Statistics, Edited by J. Antoch, Physica-Verlag, (2004), 1543-1550.
*Patterson H.D. and Thomson R. (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545-554.
*Pázman A. (2004). Correlated optinum design with parametrized covariance function: justification of the use of the Fisher information matrix and of the method of virtual noise. Research Report Series of the Department of Statistics and Mathematics, Wirtschaftsuniversität Wien.
*Pázman and Müller (1998). A new interpretation of design measures. In Atkinson, A.C. and Pronzato, L. editors, Model-Oriented Data Analysis 5, Heidelberg. Physica.
*Rodríguez-Díaz, J.M. (2017). Computation of c-optimal designs for models with correlated observations. Computational Statistics & Data Analysis 113, 287-296.
*Rodríguez-Díaz J.M., Rivas-López M.J., Martín-Chaves S. and Vereas-Talaván C. (2016). Optimal designs for random blocks model using modified criteria. Quality and Reliability Engineering International. 32(5), 1707- 1714.
*Rodríguez Díaz J.M. and Santos-Martín M.T.(2009). Study of the best designs for modifications of the Arrhenius equation. Chemometrics and Intelligent Laboratory Systems 95, 199–208.
*Rodríguez Díaz J.M. Santos Martin M.T. Waldl H. and Stehlik M. (2012). Filling and D-optimal designs for the correlated generalized exponential models – Chemometrics and Intelligent Laboratory Systems, 114, 10-18.
*Rodríguez-Torreblanca C. and Rodríguez-Díaz J.M. (2007). Locally D- and c-optimal designs for Poisson and Negative Binomial regression models. Metrika 66, 161-172.
*Sheiner L. RosenbergB. and Melmon K.L. (1972). Modeling of individual pharmacokinetics for computer-aided drug dosage. Comp. Biomed. Res, 5, 441-459.
*Steimer, J.L., Vozeh S., Racine-Poon A, Holford N. and O’Neill B. (1994). The population approach: rationale, methods and applications in clinical pharmacology and drug development. In Handbook of Experimental Pharmacology, 110: Pharmacokinetics of Drugs, Ed. P.G. Welling and L.P. Balant, 405-451. Berlin: Springer Verlag.
*Tommasi C., Rodríguez-Díaz J. M and Santos-Martín M. T. (2014). Integral approximations for computing optimum designs in random effects logistic regression models. Computational Statistics & Data Analysis, 71, 1208-1220.