Publications

21/10/14, 14:34

……………………………………

 Renewable based modeling and optimization

……………………………………

—Simulation based process design 

-Martín, M., Hornés, A., Martín, L.M., Sancho, R:, Márquez, M.C. , (2003) “Simulación de la fabricación de benceno a partir de tolueno: Aplicación del simulador comercial CHEMCAD”, Ingeniería Química, nº 406, Octubre 2003, págs 140-150.

-De la Cruz, V, Hernández, S,Martín M. Grossmann. I.E. Integrated synthesis of Biodiesel, Bioethanol, Ibutene and glycerol ethers from algae. Ind. Eng. Chem Res. 135, 108-114

-Bueno, L., Toro, C.A., Martín, M. (2015) Techno-economical evaluation of the production of added value polymers from glycerol. Chem. Eng. Res. Des.93, 432-440 DOI: 10.1016/j.cherd.2014.05.010

-Almena, A., Martín, M (2015) Techno-economic analysis of the production of epichlorohydrin from glycerol. Ind. Eng. Chem. Res. 10.1021/acs.iecr.5b02555

-Malmierca, S, Díez-Antoínez, R., Paniagua, A.I., Martín, M  (2017) Technoeconomic study of AB biobutanol production. Part 1: Biomass Pretreatment and Hydrolysis. Industrial engienering Chemistry reseach. 56, 6, 1518–1524, DOI: 10.1021/acs.iecr.6b02943

-Malmierca, S, Díez-Antoínez, R., Paniagua, A.I., Martín, M  (2017) Technoeconomic study of AB biobutanol production. Part 2: Process design. 56, 6, 1525–1533 DOI: 10.1021/acs.iecr.6b02944

-Almena, A., Bueno, L., Díez, , M Martín M (2017) Integrated biodiesel facilities: Review of transformation processes of glycerol based production of fuels and chemicals. Clean Technologies and Environmental Policy. 10.1007/s10098-017-1424-z

 —Biomass process optimization and design

-Karuppiah, R., Peschel, A., Grossmann, I.E., Martín, M., Martinson, W., Zullo, L. (2008) “Energy optimization of an Ethanol Plant” AICHE Journal. 54, 6, 1499-1525.

-Grossmann, I.E., Martin, M. (2010) Energy and Water Optimization in Biofuel Plants. Chinese J. Chem. Eng, 18 (6) 914-922
(8/25 Hottest paper Chinese J. Chem. Eng, January to March 2011)

-Martín, M., Grossmann, I.E. (2011) “Energy optimization of lignocellulosic bioethanol production via gasification” AIChE J. 57 (12), 3408-3428
(7th Top Cited paper AICHE 2012)

-Cucek, L.; Martín, M.; Kravanja, Z.; Grossmann, I.E., (2011) Integration of Process Technologies for the Simultaneous Production of fuel Ethanol and food from Corn grain and stover. Comp. Chem. Eng. 35,8, 1547-1557
(Top cited paper award 2010-2012. Comp. Chem. Eng.)

-Martín, M., Grossmann, I.E. (2011) Energy optimization of Hydrogen production from biomass. Comp. Chem. Eng. 35, 9, 1798-1806
( 21/25 hottest articles July / Sep 2011)

-Martín, M., Grossmann, I.E. (2012) Energy optimization of lignocellulosic bioethanol production via Hydrolysis. AIChE J. 58 (5) 1538-1549
(5th Top Cited paper AICHE 2012)

-Martín, M., Grossmann, I.E. (2011) Process optimization of FT- Diesel production from biomass.Ind. Eng. Chem. Res. 50 (23),13485–13499

-Martín, M., Grossmann, I.E. (2012) Simultaneous optimization and heat integration for biodiesel production from cooking oil and algae. Ind. Eng. Chem Res. 51 (23) 7998-8014

-Severson, K., Martín, M., Grossmann, I.E. (2012) Process optimization bioDiesel production using bioethanol. AIChE J. DOI: 10.1002/aic.13865

-Martín, M., Grossmann, I.E., (2013) On the systematic synthesis of sustainable biorefineries. Ind. Eng. Chem. Res. 52 (9) 3044-3064

-Martín, M., Grossmann, I.E., (2013) Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel Accepted AIChE J. DOI 10.1002/aic.14071
Nominated ENI award 2014

-Martín, M., Grossmann, I.E., (2013) Optimal use of Hybrid feedstock, Switchgrass and Shale gas, for the Simultaneous production of Hydrogen and Liquid Fuels. Energy 55, 15, 378-391

-Martín, M.; Grossmann, I.E. (2013) ASI: Towards the optimal integrated production of biodiesel with internal recycling of methanol produced from glycerol. Environmental Progress & Sustainable Energy 32(4) 791-801,

-Martín, M.; Grossmann, I.E. (2014) Optimal Simultaneous Production of i-butene and Ethanol from Switchgrass. Biomass Bioenergy (61), 93-103

-Martín, M., Grossmann, I.E. (2014) Process optimization hydrogen and liquid fuels production from glycerol using reduced order modelling. Ind. Eng Chem Res. 53 (18), 7730–7745

-Martín, M.; Grossmann, I.E. Simultaneous dynamic optimization and heat integration for the co-production of diesel substitutes: Biodiesel (FAME & FAEE) and glycerol ethers from algae oil. Ind. Eng. Chem. Res. 53, 11371-11383

-Martín, M.; Grossmann, I.E. Optimal simultaneous enhanced production of biodiesel and bioethanol from algae oil via Glycerol fermentation Applied. Energy. 10.1016/j.apenergy.2014.08.054

-Martín M (2014) Carbon Capture, How and then What?. J Adv Chem Eng 4: e102. doi: 10.4172/2090-4568.1000e102

-Martin M., Grossmann I.E. (2015) Optimal production of biodiesel (FAEE) and bioethanol from switchgrass. Ind. Eng. Chem. Res. 54, 4337-4346.  DOI: 10.1021/ie5038648

-Peral, E. Martín, M , (2015) Optimal production of DME from switchgrass based syngas via direct synthesis. Ind. Eng. Chem. Res. 10.1021/acs.iecr.5b00823

-Martin M., Grossmann I.E. (2016) Optimal production of Furfural and DMF from algae and swichgrass. Ind. Eng. Chem. Res. 55(12) 3192-3202, 10.1021/acs.iecr.5b03038

-Martín, M. (2016) RePSIM metric for design of sustainable renewable based fuel and power production processes. Energy 114, 833-845, DOI: 10.1016/j.energy.2016.08.031

-Martín, M. Grossmann, I.E. (2016) Optimal integration of algae – switchgrass facility for the production of methanol and biodiesel. ACS Sustainable Chemistry and Engineering 4, 10, 5651–5658 https://10.1021/acssuschemeng.6b01558

-Martín, M., Grossmann, I.E. (2016) Towards zero CO2 emissions in the production of methanol from switchgrass. CO2 to methanol. Comp. Chem. Eng. 105, 308-316 https:// 10.1016/j.compchemeng.2016.11.030

-Andrade, .T,A., Massimiliano, E., Cistensen, K. V. (2019) Biodiesel Production Catalyzed by Liquid and Immobilized Enzymes: Optimization and Economic Analysis Chem. Eng. Res. Des. 141, 1-14 https://doi.org/10.1016/j.cherd.2018.10.026

-Aristizabal Marulanda, V, Martín, M., Cardona CA (2019) An integral methodological approach for biorefineries design: Study case of Colombian coffee cut-stems Comp. Chem Eng. 126, 35-53 10.1016/j.compchemeng.2019.03.038

-Galán, Guillermo; Martín, Mariano; Grossmann, Ignacio (2019) Integrated Renewable production of ETBE from Switchgrass. ACS Sust. Chem Eng. 7(9) 8943-8953
https://10.1021/acssuschemeng.9b01004

-Sánchez, A., Martín, M., Vega, P. (2019) Biomass based sustainable Ammonia production: Digestion vs Gasification ACS. Sust. Chem. Eng. 7, 11, 9995–10007
https://10.1021/acssuschemeng.9b01158

-Martín, M., Adams, T.A. (2019) Future directions in process and product synthesis and design Comp. Chem Eng. 128, 421-436 https://doi.org/10.1016/j.compchemeng.2019.06.022

Taimbú de la Cruz, C.A., Martín, M., Grossmann, I.E. (2019) Process Optimization for the hydrothermal production of algae fuels Ind. Eng. Chem. Res. 58 (51) 23276-23283
https://10.1021/acs.iecr.9b05176

Martín, M, Redondo, J., Grossmann, I.E (2020) Optimal integrated facility for oxymethylene ethers production from methanol. ACS Sust. Chem. Eng. 8, 16, 6496-6504
https://10.1021/acssuschemeng.0c01127

 

 —Solar and Wind based processes

-Martín, L, Martín, M. (2013) Optimal year-round operation of a Concentrated Solar Energy Plant in the South of Europe App. Thermal Eng. 59, pp. 627-633.

-Vidal, M., Martín, M.  (2015) Optimal coupling of biomass and solar energy for the production of electricity and chemicals.Comp. Chem. Eng 72, 273-283

-Davis, W., Martín, M (2014) Optimal year-round operation for methane production from CO2 and Water using wind energy. Energy 69, 497-505

-Vidal, M., Martín, M (2014) Planta de producción de silicio para módulos fotovoltaicos. Era Solar. 180, Mayo/Junio 2014, Año XXXII. 24-35

-Davis, W., Martín, M Optimal year-round operation for methane production from CO2 and Water using wind and/or Solar energy. J. Cleaner Prod. 80 , 252-261.
Nominated ENI award 2015

-Martín M (2014) On the challenges of the use and integration of renewable energy sources. Energy Research J. 5 (1) 1-3 DOI : 10.3844/erjsp.2014.1.3

-Martin, M. (2015) Optimal annual operation of the dry cooling system of a Concentrated Solar Energy Plant in the South of Spain. Energy. 84, 774-782 10.1016/j.energy.2015.03.041

-Martín, M, Davis, W. (2015) Integration of wind, solar and biomass over a year for the constant production of CH4 from CO2 and water. Comp Chem. Eng. 84,313-325. 10.1016/j.compchemeng.2015.09.006
(24/25 Hottest articles Comp Chem Eng. Oct-Dec 2015)

-Martín, M (2016) Optimal year-round production of DME from CO2 and water using renewable energy. J CO2 Utilization DOI:10.1016/j.jcou.2016.01.003

-Martin M. (2016) Methodology for solar and wind based process design under uncertainty: Methanol production from CO2 and hydrogen Comp Chem Eng. 92, 43-54
10.1016/j.compchemeng.2016.05.001

-De la cruz, Martin M (2016) Characterization and optimal site matching of wind turbines: Effects on the economics of synthetic methane production J Cleaner Prod. 133, 1302-1311
https://10.1016/j.jclepro.2016.06.019

-Martin, M. Grossmann I.E: (2017) Optimal integration of a self sustained algae based facility with solar and/or wind energy J Clean Prod. 145, 336-347
https://10.1016/j.jclepro.2017.01.051
Nominated ENI award 2017

-Martín, M (2017) Artifical vs natural reuse of CO2 for DME production. Are we getting any close? Engineering. 3(2) 166-170
 http://dx.doi.org/10.1016/J.ENG.2017.02.002

-Martin, M., Martín, M (2017) Cooling limitations in power plants: Optimal multiperiod design of natural draft cooling towers. Energy. 135, 625-636
  http://dx.doi.org/10.1016/j.energy.2017.06.171

-Ramírez-Márquez, C., Vidal, M., Vázquez-Castillo, J.A., Martín, M., Segovia-Hernández, J.G (2017) Process design and intensification for the production of solar grade silicon. J. Cleaner Prod. 170, 1579-1593
  10.1016/j.jclepro.2017.09.126

-Sánchez A, Martín M, (2018) Optimal renewable production of ammonia from water and air, Journal of Cleaner Production 178, 325-342
https://10.1016/j.jclepro.2017.12.279

-Sánchez, A., Martín, M (2018) Scale up and Scale down issues of renewable Ammonia plants: Towards modular design. Sust. Prod. Consump., 16, 176-192
https://doi.org/10.1016/j.spc.2018.08.001

-Luceño, J.A., Martín, M (2018) Optimal design of aging systems: A-frame coolers design under fouling. Comp. Chem Eng.  122, 47-58 https://doi.org/10.1016/j.compchemeng.2018.05.015

-Luceño, J.A., Martín, M (2018) Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants. Energy 165, Part B, 483-500
https://10.1016/j.energy.2018.09.177

-de la Fuente, E.; Martín M.  (2019) Optimal coupling of waste and concentrated solar for the constant production of electricity over a year. AIChE J. 65, 7, e16559
https://10.1002/AIC.16559

-Ramírez Marquez, C., Contresar Zarazua, G., Martín, M., Segovia Hernández, J.G. (2019) Safety, Economic and Environmental Optimization Applied to Three Processes for the production of solar grade silicon. ACS. Sust. Chem. Eng. 7, 5, 5355–5366
https://10.1021/acssuschemeng.8b06375

-Pérez Uresti, S., Martín, M., Jiménez Gutierrez, A (2019) Estimation of renewable-based steam costs. Applied Energy 250 (2019) 1120–1131
https://doi.org/10.1016/j.apenergy.2019.04.189

-Sanchez, A., Gil, L.M., Martín, M(2019) Sustainable DMC production from CO2 and renewable ammonia and methanol.j Co2 Utilization. 33 , 521-531 https://doi.org/10.1016/j.jcou.2019.08.010

-de la Fuente, E., Martín, M (2020)  Site specific process design for Hybrid CSP-Waste plants. Comp. Chem. Eng. 135, 106770 https://doi.org/10.1016/j.compchemeng.2020.106770

-Ramírez Marquez, C., Martín-Hernández, E., Martín, M., Segovia Hernández, J.G. (2020) Surrogate based optimization of a process of polycrystalline silicon production Comp. Chem. Eng.
https://doi.org/10.1016/j.compchemeng.2020.106870

-Ramírez Marquez, C., Martín-Hernández, E., Martín, M., Segovia Hernández, J.G. (2020) Optimal Portfolio of Products in a Polycrystalline Silicon Refinery. Ind. Eng. Chem Res
https://doi.org/10.1016/j.jcou.2019.08.010

 

 

—Waste process optimization and design

-León, E.A., Martín, M (2016) Optimal production of power in a combined cycle from manure based biogas Energy Conversion and Management 114, 89–99 DOI: 10.1016/j.enconman.2016.02.002

-Hernández, B, Martín, M. (2016) Optimal composition of the biogas for dry reforming in the Production of Methanol Ind Eng Chem. Res. 10.1021/acs.iecr.6b01044

-Henárndez, B., Martin, M.(2017) Optimal integrated plant for waste to biodiesel production ACS Sust. Chem and Eng., 5 (8), 6756–6767, 10.1021/acssuschemeng.7b01007

-Martín E., Sampat, A., Martín, M., Zavala. V (2018) Optimal integrated facility for waste processing 10.1016/j.cherd.2017.11.042

-Manuel R. Taifouris, Mariano Martín, Multiscale scheme for the optimal use of residues for the production of biogas across Castile and Leon, Journal of Cleaner Production (2018), 185, 239-251, doi: 10.1016/j.jclepro.2018.03.018

-Sampat, A., Martín Hernández, E., Martín, M, Zavala V (2018) Technologies and Logistics for Phosphorus Recovery from Livestock Waste. Clean Technologies and Environmental Policy 20 (7), 1563-1579 https://doi.org/10.1007/s10098-018-1546-y

-Hernández, B, Martin, M (2018) Optimization for biogas to chemicals via tri-reforming analysis of fischer-tropsch fuels from biogas. Energy Conve manag. 174, 998-1013. https://doi.org/10.1016/j.enconman.2018.08.074

-Manteca, P., Martín, M (2018) Integrated facility for Power plant waste processing. Ind. Eng. Chem Res.
href=”https://10.1021/acs.iecr.8b04029″ target=”_blank”>https://10.1021/acs.iecr.8b04029
10.1021/acs.iecr.8b04029

-Curto, D., Martín, (2019) M Renewable based biogas upgrading. J Cleaner Production.  224, 50-59 https://doi.org/10.1016/j.jclepro.2019.03.176

-Hernández, B., Martín M (2019) Optimal production of syngas via super-dry reforming. analysis for natural gas and biogas under different CO2 taxes. Chem. Eng. Res. Des.  148, 375-392 https://doi.org/10.1016/j.cherd.2019.06.030

-Criado, A., Martín, M (2019)  Integrated facility for the use of oranges as a source for power, chemicals and juice Bulgarian Chemical Communications, Volume 51, Special Issue B 093 – 096.DOI:10.34049/bcc.51.B.005

-Criado, A., Martín, M (2020) Integrated multiproduct facility for the production of chemicals, food and utilities from oranges. Ind. Eng. Chem. Res. 59, 16, 7722-7731
https://10.1021/acs.iecr.0c00476

Martín-Hernández, E., Ruiz Mercado, G, Martín ; (2020) Model-Driven Spatial Evaluation of Phosphorus Recovery from Livestock Leachate for Struvite Production. Journal of Environmental Management 271, 110967.
https://doi.org/10.1016/j.jenvman.2020.110967

—Water consumption

-Ahmetovic, E.; Martín, M.; Grossmann, I.E. (2010) “Optimization of Water Consumption in Process industry: Corn – based ethanol case study” Ind. Eng. Chem Res. 49 (17) 7972- 7982

-Martín, M.; Ahmetovic, E.; Grossmann, I.E. (2010) “Optimization of Water Consumption in Second Generation bio-Ethanol Plants ” Ind. Eng. Chem. Res. 50 (7), pp 3705–3721

-Grossmann, I.E.,Martín, M., Yang, L. (2014) Review of Optimization Models for Integrated Process Water Networks and their Application to Biofuel Processes. COCHE. 5 101-109

-Martin M., Grossmann I.E (2015)  Water – energy nexus in biofuels production and renewable based power. Sustainable production and consumption 10.1016/j.spc.2015.06.005
Top cited paper 2015

-Guerras, L.S., Martín, M. (2020) On the water footprint in power production: Sustainable design of wet cooling towers. Applied energy. 263, 114620 https://doi.org/10.1016/j.apenergy.2020.114620

-Martín-Hernández, E., Guerras, L.S:, Martín, M.(2020) Optimal technology selection for the biogas upgrading into biomethane. J Clean Prod. 267, 122032
https://doi.org/10.1016/j.jclepro.2020.122032

 —Process and Product design

-Karuppiah, R., Martín, M., Grossmann, I.E. (2010)“A Simple Heuristic for Reducing the Number of Scenarios in Two-stage Stochastic Programming” Comp Chem. Eng. 34, 1246-1255

-Martín, M., Martínez, A. (2013) A Methodology for simultaneous process and product design in the consumer products industry: The case study of the laundry business. Chem. Eng. Res. Des., 91, 795–809
Nominated Jounior Moulton medal award

- Martin M.,  Martínez, A  (2015) Addressing Uncertainty in formulated products and process design . Ind. Eng. Chem. Res.
https://10.1021/acs.iecr.5b00792

- Hernández, B, León, E., Martín, M (2017) Bio-waste selection and blending for the optimal production of power and fuels via anaerobic digestion.Chem. Eng. Res. Des.
https://10.1016/j.cherd.2017.03.009

- Martínez, J., Peña, J., Ponche – Ortega, J.M.; Martín M (2017) A Multi-objective optimization approach for the selection of working fluids of geothermal facilities: Economic, environmental and social aspects. Journal of Environmental Management Accepted
https://10.1016/j.jenvman.2017.07.001

-Martín, M., Martínez, M (2018) On the effect of price policies in the design of formulated products Computers & Chemical Engineering . Volume 109, 299–310
https://doi.org/10.1016/j.compchemeng.2017.11.019

-Peña, J., Martínez, J., Martín M, Ponche – Ortega, J.M.; (2018) Optimal production of power from mid-temperature geothermal sources: Scale and safety issues. Energy Conversion Management. 165,  172–182
https://doi.org/10.1016/j.enconman.2018.03.048

-Guerras, L.S., Martín, M (2019) Optimal gas treatment and coal blending for reduced emissions in power plants: A case study in Northwest Spain. Energy. 169, 739-749.
https:// 10.1016/j.energy.2018.12.089

-Martín, M., Adams, T.A. (2019) Future directions in process and product synthesis and design Comp. Chem Eng. 128, 421-436 https://doi.org/10.1016/j.compchemeng.2019.06.022

-Taifouris, M., Martín M, Martinez, A., Esquejo, N. (2020) Challenges in the design of formulated products: Multiscale Process and product design. Current Opinion in Chemical Engineering. 27, 1-9
https://doi.org/10.1016/j.coche.2019.10.001

-Guerras, L.S., Martín, M (2019) Optimal flue gas treatment for Oxy-Combustion based pulverized coal power plants. Ing. Eng: Chem. Res. 58, 45, 20710-20721.
https:// 10.1021/acs.iecr.9b04453

Taifouris, M., Martín M, Martinez, A., Esquejo, N. (2020)  On the effect of the selection of suppliers on the design of formulated products. Comp. Chem Eng. 141, 106980
https://doi.org/10.1016/j.compchemeng.2020.106980

 —Supply chain and integration

-Cucek, L., Martín, M., Grossmann, I.E., Kravanja, Z (2014) Multiperiod Synthesis of Integrated Biomass and Bioenergy Supply Network . Comp Chem eng. http://dx.doi.org/10.1016/j.compchemeng.2014.02.020
24/25 Most downloaded paper April to June 2014

- Sampat, A.S., Martín, E., Martín, M., Zavala, VM (2017) Optimization Formulations for Multi-Product Supply Chain Networks. Comp Chem .Eng. 104-296-310
https://doi.org/10.1016/j.compchemeng.2017.04.021

- Martin, M. Grossmann I.E: (2018) Optimal integration of renewable based processes for fuels and power production: Spain case study Applied Energy
https://10.1016/j.apenergy.2017.10.121

-Sampat, A., Martín Hernández, E., Martín, M, Zavala V (2018)  Technologies and Logistics for Phosphorus Recovery from Livestock Waste. Clean Technologies and Environmental Policy https://doi.org/10.1007/s10098-018-1546-y

-Pérez Uresti, S., Martín, M, Jiménez-Guitierrez, A. (2019) Superstructure approach for the design of renewable-based utility plants. Comp. Chem. Eng.  123. 371-388
https://doi.org/10.1016/j.compchemeng.2019.01.019

-Pérez Uresti, S.I., Martín, M, Jiménez-Gutiérrez, A., (2020) A methodology for the design of flexible renewable based utility plants ACS Sus. Chem Eng. 8, 11, 4580-4597
https://doi.org/10.1021/acssuschemeng.0c00362

 —Operation of integrated plants

Zhang, Q., Martín, M., Grossmann, I.E. (2018) Integrated design and operation of renewables-based fuels and power production networks https://doi.org/10.1016/j.compchemeng.2018.06.018
…………………………………………………………

Multiphase reactor engineering

…………………………………………………………

- Martín, M.; Montes, F.J.; Galán, M.A.(2006) “Numerical Calculation of Shapes and Detachment Times of Bubbles Generated from a Sieve Plate”, Chemical Engineering Science, 61, 363-369

- Martín, M.; Montes, F.J.; Galán, M.A. (2006) “On the Influence of Liquid Properties on Bubble Volume and Generation Times”, Chemical Engineering Science. 61, 5196-5203.

- Martín, M.; Montes, F.J.; Galán, M.A.(2007) “Oxygen Transfer from Growing Bubbles: Effect of the Physical Properties of the Liquid” Chemical Engineering Journal. 128, 21-32

- Martín, M.; Montes, F.J.; Galán, M.A. (2007) “Bubble Coalescence at Sieve Plates: II. Effect of Coalescence on Mass Transfer. Superficial Area versus Bubble Oscillations.” Chemical Engineering Science 62 1741 – 1752

- Martín, M.; García, J.M.; Montes, F.J.; Galán, M.A. (2008) “On the effect of sieve plate configuration on the coalescence of bubbles” Chemical Engineering and Processing: Process intensification. 47 (2008) 1799–1809

- Martín, M.; Montes, F.J.; Galán, M.A. (2008) “Bubbling Process in Stirred Tank Reactors I: Agitator Effect on Bubble Size, Formation and Rising” Chemical Engineering Science 63 3212 – 3222
(19/25 Hottest articles Chem. Eng. Sci. April June 2008)

- Martín, M.; Montes, F.J.; Galán, M.A. (2008) “Bubbling Process in Stirred Tank Reactors II: Agitator Effect on Mass Transfer” Chemical Engineering Science 63, 3223 – 3234

- Martín, M.; Montes, F.J.; Galán, M.A. (2008) “On the Contribution of the Mixing Scales on the Oxygen Transfer in Stirred Tanks” Chemical Engineering Journal (2008), 145, 2, 232-241

- Martín, M.; Montes, F.J.; Galán, M.A. (2008) “On the Influence of Impeller Type on the Bubble Break-up Process in Stirred Tanks” Ind. Eng. Chem. Res. 47, 6251–6263

- Martín, M.; Montes, F.J.; Galán, M.A. (2008) “ Mass Transfer Rates from Oscillating Bubbles in Bubble Columns Operating with Viscous Fluids” Ind. Eng. Chem. Res. 47 (23), 9527-9536

- Martín, M.; Montes, F.J.; Galán, M.A. (2009) “Physical Explanation of the Empirical Mass Transfer Equations: Effect of Bubble Behaviour on Equipment Design” Chem Eng Sci. 64 , 410 – 425

- Martín, M.; Montes, F.J.; Galán, M.A. (2009) “Mass transfer from oscillating bubbles in bubble columns” Chem. Eng. J. Chemical Engineering Journal 151, 79–88

- Martín, M.; Montes, F.J.; Galán, M.A. (2009) “Theoretical Modelling of the effect of surface active species on the Mass Transfer rates in Bubble Column Reactors” Chem. Eng. J. 155, 272–284

- Martín, M.; Montes, F.J.; Galán, M.A. (2010) “Approximate theoretical solutions for the Sherwood number of oscillating bubbles at different Reynolds numbers” Chem. Eng Proc. 49, 245-254

- Martín, M.; Montes, F.J.; Galán, M.A. (2010) “Mass Transfer Rates from Bubbles in Stirred tanks operating with Viscous Fluids.” Chem. Eng. Sci. 65, 3814–3824
(17/25 Hottest articles Chem. Eng. Sci. April June 2010)

- Martín, M.; Galán, M.A.; Cerro, R.L.; Montes, F.J. (2011) “Bubble oscillations: Hydrodynamics and Mass transfer-A Review.” Bubble. Sci. Eng. Technol. 3(2) 48-63

-Rodríguez Rivero, C., Nogareda, J., Martín, M, Martín del Valle, E. M., Galán, (2013) CFD modeling and its validation of non-Newtonian fluid flow in a microparticle production process using fan jet nozzles. Powder Tech. 246, 617-624

-Borja Hernández, Blair Fraser, Luis Martin de Juan, and Mariano Martín CFD modeling of swirling counter-current flows in industrial spray drying towers under fouling conditions. Ind. Eng. Chem. Res. DOI: 10.1021/acs.iecr.8b02202 57(35), 11988-12002