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Full analytical models of heat engines and refrigerators in linear irreversible thermodynamics can be defined
by means of a chain of coupled heat devices. In this way it is possible to derive results and techniques of
finite-time thermodynamics, like endoreversible efficiencies and the usual models of irreversible heat devices,
in terms of an endoreversible energy converter plus a heat leak between external reservoirs. Also, a counter-
intuitive relationship is found between the global behavior of the chain and the individual performance of the
devices: it is not necessary nor generally possible to impose the same operation regime on every device to
achieve a desired overall performance.
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I. INTRODUCTION

One of the best-known results in equilibrium thermody-
namics is Carnot’s theorem �1�, which states the upper
bounds of energy conversion processes. Carnot showed that,
for a heat device between two reservoirs at temperatures Ta
and Tb �Ta�Tb�, the maximum efficiency in the conversion
is �C=1−� ��=Ta /Tb� when working as a heat engine, while
the maximum coefficient of performance �COP� when work-
ing as a refrigerator is �C=� / �1−��. These upper values have
little practical relevance, since they refer to processes cycling
along reversible paths which involve infinitely slow energy
transfers. Real heat devices, on the contrary, work at nonzero
power and evolve along irreversible paths coming from
finite-time and finite-size unavoidable constraints.

Linear irreversible thermodynamics �2� focuses on the ir-
reversible evolution of macroscopic systems, thus extending
the scope of equilibrium thermodynamics. This theory, after
a careful analysis of entropy sources of systems in local equi-
librium, defines thermodynamic forces and fluxes that are
related to each other by means of linear relationships gov-
erning the macroscopic evolution. But the identification of
entropy sources in real energy converters is by no means
obvious, and applications of the theory to real processes usu-
ally lead to complex equations from which it is hard to ex-
tract useful information. Because of these difficulties the
theory has been up to now almost limited to the analysis of
simple isothermal energy converters �3�.

The limitations of both equilibrium and linear irreversible
thermodynamics in describing the behavior of real heat de-
vices and formulating useful criteria describing their perfor-
mance has motivated the development of a new field known
as finite-time thermodynamics �FTT� �4–10� which, while
keeping the formalism as close as possible to that of equilib-
rium thermodynamics, introduces simple modifications to
take into account the main sources of irreversibility observed
in real devices. For example, the so-called irreversible
Carnot-like models have a relative analytical simplicity and
are able to account for irreversibilities due to finite-rate heat
transfers between the working fluid and the external heat
sources, internal dissipation of the working fluid, and heat
leaks between reservoirs �see Refs. �9,10� for a recent re-
view�. Simplified, limiting models are those based on the

endoreversible approximation �8,11� where the only sources
of irreversibility are the heat transfers between the external
reservoirs and the working system. A paradigmatic model in
this context is due to Curzon and Ahlborn �11� �see also
�12��, who studied a Carnot heat engine cycle coupled to
external reservoirs and assumed that the heat transfers obey a
Fourier law. They showed that the efficiency of this engine at
maximum power is given by �CA=1−��, known as the
Curzon-Ahlborn efficiency. This expression, though subject
to some controversy �13�, provides a surprisingly good ap-
proximation to the observed efficiencies of very different
power plants �8–10,14,15� suggesting that it represents a
“universal” behavior rather than a model specific feature.

The analysis of Curzon and Ahlborn is not bound to de-
vices working near equilibrium; hence it does not seem easy
to reproduce within the framework of linear irreversible ther-
modynamics. Any attempt should first substitute simple FTT
models by an exhaustive macroscopic description of the heat
device, and then one must integrate involved differential
equations describing the local behavior of such systems to
get information about its performance. However, this pro-
gram has been carried out recently, showing that the Curzon-
Ahlborn efficiency and other endoreversible features discov-
ered in FTT models of heat engines and refrigerators can be
derived without approximations from the principles of linear
irreversible thermodynamics �16–19�, thus supporting their
validity and generality. The starting point is the analysis of a
chain �or “cascade”� of coupled heat devices working be-
tween small temperature differences. Similar systems have
attracted attention in FTT and also played a prominent role in
the development of some of the most basic results of equi-
librium thermodynamics, like the definition of the absolute
temperature scale. Here in this paper they are considered
from the point of view of linear irreversible thermodynamics
to construct full models of heat devices working between
arbitrary temperature differences. Unlike FTT models of heat
devices �which are characterized by means of a reduced
number of parameters�, the systems considered in these
works involve an infinite number of parameters like transport
coefficients and thermodynamic forces, yet they can be tack-
led analytically.

The cascade construction was first introduced in �16�,
where the Curzon-Ahlborn efficiency was derived under the
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assumption that the unit devices work individually at maxi-
mum power. Similar reasoning can be applied to analyze
different working regimes of refrigerators �18�. In a subse-
quent work �19�, we considered a chain of coupled heat en-
gines placed along a monotonic temperature profile and
proved that these derivations are particular cases of a much
more general result: because of the couplings between adja-
cent devices in the chain, the thermodynamic forces and
fluxes must satisfy a nonlinear differential equation whose
solution depends on an integration constant. This constant
can be viewed as a control parameter that fixes the operation
regime of the whole chain. Quite surprisingly, the “global”
operation regime of the chain does not generically coincide
with those of the individual devices: for instance, when the
chain works at maximum power, the individual devices ge-
nerically do not work individually at maximum power �ex-
cept for a very special form of the transport coefficients
�19��, yet the Curzon-Ahlborn efficiency and other endor-
eversible features can be derived without the a priori as-
sumption of a particular working regime for the individual
devices. It suffices to introduce a certain delicate balance
among the transport coefficients, which indeed implies that
the thermodynamic fluxes are perfectly coupled along the
chain.

With the present work we give details and extend our
previous Letter and discuss some of its implications. Our
main goals are �i� to extend the above study �19� for arbitrary
temperature profiles �not necessarily monotonic�, �ii� to de-
velop a unified description within linear irreversible thermo-
dynamics of nonisothermal energy converters including heat
engines and refrigerators, �iii� to analyze for each device
class some optimum operation regimes, comparing the re-
sults with those obtained in FTT for endoreversible and irre-
versible Carnot-like models, and �iv� to provide an interpre-
tation within linear irreversible thermodynamics of heat
leaks, which play a prominent role in the formulation of
irreversible models of FTT �9,10�. The paper is organized as
follows. In Sec. II we introduce a general formalism which
describes chains of generic heat devices working along arbi-
trary temperature profiles in linear irreversible thermody-
namics. The main result will be presented in Sec. III: a non-
linear differential equation linking the thermodynamic forces
and transport coefficients in the steady state. Though its so-
lution in the most general case is unknown to the authors, it
can be fully worked out when the thermodynamic fluxes are
perfectly coupled for otherwise arbitrary temperature profile
and transport coefficients �Sec. III A�. In any other case it is
always possible to find a special temperature profile �Sec.
III B� which allows us to decompose the system in terms of
a chain with perfectly coupled thermodynamic fluxes plus a
heat leak; such a decomposition could be viewed as the lin-
ear irreversible thermodynamics equivalent to some irrevers-
ible FTT models where an endoreversible heat converter is
supplemented with a heat leak between external reservoirs.
Also, various particular models for specific choices of the
transport coefficients are considered in Sec. III C; they pro-
vide additional intuition about the behavior of the system
beyond the perfectly coupled limit. In Sec. IV we perform a
systematic analysis of several operation regimes when the
chain works as a heat engine or as a refrigerator, and com-

pare the results with those coming from FTT. We analyze in
Sec. V the behavior of the individual devices when a collec-
tive working regime for the chain as a whole has been se-
lected. Finally, the summary and discussion of our findings
are presented in Sec. VI.

II. BASIC FRAMEWORK

Let us consider a chain of coupled energy converters,
each working between different heat reservoirs with well-
defined temperatures. These reservoirs are labeled by the co-
ordinate x� �a ,b� and form a temperature profile T�x� which
varies from T�a�=Ta to T�b�=Tb. The devices operate in a
stationary state where all the magnitudes are time indepen-
dent �we could also consider periodic states for devices
evolving cyclically; in this last case the relevant averaged
magnitudes per period eventually become time independent.�
Moreover, the device units are coupled in the following
sense: the heat output �input� per unit of time �or per period,
in the case of cyclic heat converters� from the device unit at
T�x+�x� is exactly equal to the heat input �output� to the
next device unit at T�x�. Hence, the complete chain can be
considered as a single energy converter whose overall behav-
ior is determined by heat exchanges with the reservoirs at
x=a and x=b.

To see this, consider the generic unit device sketched in
Fig. 1: heat is allowed to flow at rates J�x+�x� and J�x� at
the reservoirs T�x+�x� and T�x�, respectively, and the differ-
ence between these fluxes is exchanged with the surround-

ings as work at a rate �Ẇ�x�. This work is done via a force

f�x��x with conjugate flux v�x�; hence �Ẇ�x�= f�x�v�x��x.
Conservation of energy in the device implies that J�x+�x�
=J�x�+ f�x�v�x��x. Therefore in the limit �x→0 the heat
flux is a continuous function of the variable x and its deriva-
tive J��x� with respect to x has a form prescribed by the
conservation of energy:

J��x� = f�x�v�x� . �1�

Integrating this equation gives the net power exchanged by
the chain in terms of the heat fluxes Ja=J�a� and Jb=J�b� at
the reservoirs Ta and Tb, respectively,

FIG. 1. Chain of coupled heat devices. If the unit device works
as an engine and T�x+�x��T�x� the heat fluxes J�x+�x� and J�x�
point downward and the power �Ẇ�x� points outside the device.
The direction of these fluxes is reversed when the unit works as a
refrigerator.
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Ẇ = �
a

b

dx f�x�v�x� = Jb − Ja. �2�

Since the devices operate in a stationary state, all the entropy
they produce must be eventually transferred to the heat res-
ervoirs. Hence, the rate of entropy production at the device
unit working between temperatures T�x� and T�x+�x� can be
written in terms of the heat exchanged with the correspond-

ing reservoirs: �Ṡ�x�=J�x+�x� /T�x+�x�−J�x� /T�x�. Tak-
ing into account the conservation of energy �Eq. �1�� we get
at first order in �x

�Ṡ�x� = �v�x�
f�x�
T�x�

− J�x�
T��x�
T�x�2��x + O��2x� . �3�

This last equation implies in the limit �x→0 that Ṡ��x�
= �J�x� /T�x���. An integration from a to b gives the following
expression for the total rate of entropy production of the
chain:

Ṡ =
Jb

Tb
−

Ja

Ta
, �4�

which says that only the reservoirs at x=a and x=b experi-
ence net changes in the entropy.

So far we have written the main overall thermodynamic
quantities of the chain in terms of the heat fluxes Ja and Jb.
Now we go a step further and try to relate these heat fluxes to
the specific properties of our chain. To this end a physical
model of the energy conversions taking place at each device
unit must be proposed. We realize that Eq. �3� suggests con-
sidering f�x� /T�x� and �1 /T�x���=−T��x� /T2�x� as general-
ized thermodynamic forces with conjugate fluxes v�x� and
J�x�, respectively. For small values of the thermodynamic
forces and under the assumption of local equilibrium, linear
irreversible thermodynamics �2� allows us to write the fol-
lowing relationships:

v�x� = L11�x�
f�x�
T�x�

+ L12�x�� 1

T�x�
��

, �5�

J�x� = L21�x�
f�x�
T�x�

+ L22�x�� 1

T�x�
��

, �6�

where Lij�x� are Onsager coefficients. They depend on inten-
sive parameters �like temperature and others� defining the
state of local equilibrium �2� at each point of the chain;
therefore these coefficients are functions of the coordinate x
that labels the heat reservoirs. In addition they satisfy

L11�x� � 0, L12�x� = L21�x�, L22�x� � 0,

L11�x�L22�x� − L12�x�2 � 0. �7�

These properties ensure the positivity of Eq. �3� and there-
fore that of the total entropy production �Eq. �4��. Moreover,
the coefficients Lij�x� can be combined into the so-called
coupling strength parameter,

q�x� =
L12�x�

�L11�x�L22�x�
, �8�

which measures the degree of coupling between the fluxes
v�x� and J�x�. As a consequence of Eq. �7� this parameter is
bounded, q�x�� �−1,1�.

III. THE COUPLING CONDITION

Once the temperature profile T�x� and the Onsager coef-
ficients Lij�x� are fixed, the force profile f�x� cannot be cho-
sen at random. The reason is that conservation of energy in
every device unit expressed by Eq. �1� together with the
transport equations �5� and �6� implies a Ricatti differential
equation for f�x�:

�L12�x�f�x��� = L11�x�f2�x� − T�x�	L22�x�� 1

T�x�
��
�

. �9�

For simplicity we will frequently assume that the coupling
strength parameter is independent of x �q�x�=q�; then we can
make use of Eq. �8� to eliminate L11�x� in Eq. �9�:

�L12�x�f�x��� =
�L12�x�f�x��2

q2L22�x�
− T�x�	L22�x�� 1

T�x�
��
�

.

�10�

Obviously, these differential equations can be numerically
integrated, but it will prove to be useful to consider some
analytical solutions. The first difficulty is that in the most
general case there is no way of writing the general solution
of Eq. �9� or �10� by using some quadratures. However, one
can integrate it completely if some extra information is
added.

For instance, let us suppose that some particular solution
f0�x� of Eq. �10� is known. Then it can be reduced to an
inhomogeneous first-order linear differential equation and
the general solution is found by two quadratures �20�. It is
easy to check that the force profile can be written as

f�x;�� = f0�x� −
�	2�x�

L12�x��1 + �h�x��
, �11�

where � is an integration constant and 	�x� denotes a positive
function defined in terms of the particular solution f0�x�,

	�x� = Ta exp��
a

x

ds
L12�s�f0�s�

q2L22�s� � . �12�

Finally, h�x� is a positive, increasing function of x:

h�x� = �
a

x

ds
	2�s�

q2L22�s�
. �13�

Clearly, in order to avoid divergences in Eq. �11�, it is nec-
essary that ��−1 /h�b�, otherwise the linear relationships �5�
and �6� would be difficult to justify.

Once the general form of the force profile �Eq. �11�� is
known we can proceed to calculate the relevant thermody-
namic quantities. But we should notice that the particular
solution f0�x� in Eq. �12� usually cannot be found in a sys-
tematic way.
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A. Case �q�=1: Perfectly coupled fluxes

There exists an interesting class of functions Lij�x� which
allows us to find a particular solution f0�x� of Eq. �10� quite
easily by physical arguments. Let us consider the force pro-
file that cancels the flux v�x� �Eq. �5��:

fstop�x� =
L12�x�
L11�x�

T��x�
T�x�

. �14�

This force profile is not acceptable, since in the most general
case it does not represent a solution of Eq. �10�. However,
when the coupling strength parameter is �q�x��=1 for all the
device units along the chain, v�x� and J�x� are related by
J�x�=L12�x�v�x� /L11�x�, and if one of them vanishes the
other flux must vanish also. Taking into account that L11�x�
=L12

2 �x� /L22�x� when �q�x��=1, Eq. �14� can then be rewrit-
ten as

fstop�x� =
L22�x�
L12�x�

T��x�
T�x�

��q�x�� = 1� . �15�

This expression cancels Eqs. �3�, �5�, and �6�, thus ensuring
an equilibrium state in which the fluxes and the entropy pro-
duction vanish. We mention that Eq. �3� together with Eqs.
�5� and �6� defines a quadratic form in the thermodynamic
forces that becomes degenerate for �q�x��=1; in this situation
it can be canceled by nonzero forces. Equation �1� is also
satisfied, which implies that we can take Eq. �15� as the
particular solution f0�x� in �12� so that Eq. �10� is fully
solved for �q�x��=1. Actually the function �12� is 	�x�
=T�x� and together with q2=1 fixes h�x� �Eq. �13��, thus the
force profile �11� is determined up the integration constant �:

f�x;�� = fstop�x� −
�T�x�2

L12�x��1 + �h�x��
. �16�

Equation �16� together with the temperature profile T�x� and
the transport coefficients completely fixes the thermody-
namic behavior of our system. For instance, the heat flux
�Eq. �6�� crossing each reservoir is simply

J�x;�� =
− �T�x�

1 + �h�x�
, �17�

and the total power exchanged by the array �Eq. �2�� is given
by

Ẇ��� = Jb��� − Ja��� = − �� Tb

1 + �h�b�
− Ta� . �18�

Equation �17� provides a direct physical interpretation of the
parameter �: substituting x=a and taking into account that
h�a�=0 one finds �=−Ja /Ta, that is, the rate of entropy pro-
duction at reservoir Ta.

B. Case �q��1: Heat leaks

When �q�x��=1 the situation could be summarized by say-
ing that both thermodynamic fluxes are canceled by a force
profile fstop�x� defined in terms of the temperature profile and
the transport coefficients �Eq. �15�� so that it is a solution of
Eq. �10�. However, for �q�x���1, the entropy production Eq.

�3� is not degenerate and vanishes for �1 /T�x���=0 and
f�x� /T�x�=0 only. Therefore outside equilibrium the thermo-
dynamic fluxes do not simultaneously cancel and we cannot
follow a similar line of reasoning as for �q�x��=1 to find a
particular solution f0�x� of Eq. �9�. However, there exists a
different possibility which reduces the solutions of Eq. �9� to
those obtained in the previous section at the cost of assuming
a very special temperature profile.

Let us consider a chain with transport coefficients 
Lij�x��
and �q�x���1. We first realize that the linear dependence of
Eq. �9� with respect to the Onsager coefficients suggests per-
forming a decomposition of the system into two auxiliary
chains working in parallel, with transport coefficients 
Lij

� �x��
and 
Lij

���x�=Lij�x�−Lij
� �x�� subjected to the same tempera-

ture and force profiles. The coefficients 
Lij
� �x�� are chosen so

as to give a coupling-strength parameter �q��x��=1 for the
first chain. In principle, there are many ways to satisfy this
condition, and we look for those that correspond to a direct
thermal contact between the reservoirs Ta and Tb by means
of a heat leak J�� across the second chain. Since in such a
case no work is consumed or extracted from this chain, the
heat flux J�� does not depend on x. Therefore Eq. �1� implies
that f�x�v���x�=0, where v���x� denotes the flux conjugate to
f�x� along the second chain. This constraint can be satisfied
if

v���x� = L11
���x�

f�x�
T�x�

+ L12
���x�� 1

T�x�
��

= 0, �19�

which defines a relationship between the thermodynamic
forces: different forces f�x� will generally entail different
temperature profiles T�x�.

It would be highly desirable that our analysis could work
for a fixed temperature profile irrespective of the force f�x�.
This is indeed the case if the transport coefficients of the two
auxiliary chains are defined by

L11
� �x� = L11�x�, L12

� �x� = L12�x�, L22
� �x� = L12

2 �x�/L11�x�
�20�

and

L11
���x� = 0, L12

���x� = 0 L22
���x� = L22�x� − L22

� �x� . �21�

Equations �20� and �21� together with the properties �7� en-
sure that L22

� �x� and L22
���x� are non-negative functions. On

the other hand, Eq. �8� implies that the first chain has a
coupling-strength parameter �q��x��=1 whose properties are
thus known in detail �Sec. III A�. Moreover, the condition
v���x�=0 holds for any force profile so that the heat flux J��

across the second chain constitutes a heat leak. We see from
Eqs. �6� and �21� that it must satisfy

J�� = L22
���x�� 1

T�x�
��

. �22�

Therefore the price we have to pay to perform the decompo-
sition amounts to assuming a monotonic temperature profile
T�x� given by
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1

T�x�
=

1

Ta
+ J���

a

x ds

L22
���s�

. �23�

The condition T�x=b�=Tb fixes the value of the heat leak. It
can be expressed in the form of an effective linear law,

J�� = − 
�Tb − Ta� , �24�

where 
 is the effective thermal conductance across the sec-
ond chain,


 = �
a

b

ds
T�s�2

L22
���s�

, �25�

or in the form of an effective inverse law,

J�� = 
̃� 1

Tb
−

1

Ta
� , �26�

where 
̃ is given by


̃ = ��
a

b ds

L22
���s��−1

. �27�

In any case it is clear that the heat leak flows toward the
colder reservoir.

In order to check the consistency of the decomposition,
we first note that for the temperature profile given by Eq.
�23� the derivative in the second term of the right-hand side
of Eq. �9� can be written as

	L22�x�� 1

T�x�
��
�

= 	L22
� �x�� 1

T�x�
��
�

, �28�

where we have used the definition L22�x�=L22
� �x�+L22

���x� and
the fact that the right-hand side of Eq. �22� does not depend
on x. Because of Eqs. �20� and �28� the differential equation
�9� then reduces to the equivalent one for the first auxiliary
chain:

�L12
� �x�f�x��� = L11

� �x�f2�x� − T�x�	L22
� �x�� 1

T�x�
��
�

.

�29�

Therefore the original chain and the first of the two auxiliary
chains share the same force profiles f�x�, while the second
auxiliary chain gives rise to a heat leak.

C. Case �q��1: Some particular models

As a final group of analytical solutions of Eq. �9� we
consider specific models with constant �q��1 for which �i�
the temperature profile strictly increases from Ta to Tb so that
we can use the temperature T� �Ta ,Tb� to label each reser-
voir and the corresponding quantities, and �ii� the transport
coefficients are of the form

Lij�T� = lijT
n, �30�

where lij are constants such that the properties �7� are satis-
fied. In this way the existence of particular solutions of Eq.
�10� of the form f0�T�=� /T is guaranteed for a wide class of
models with constant q� �−1,1�.

To see this, let us substitute the transport coefficients �30�
and the force profile f�T�=� /T in Eq. �10�. Taking into ac-
count that the derivatives must be performed with respect to
T, we get an equation of second degree in � whose solutions
are of the form

� =
q2l22

l12

 , �31�

where 
 is a coefficient which solely depends on n and q,


 =
1

2
��n − 1� � ��n − 1�2 − 4�n − 2�/q2� . �32�

The function 	�T� �Eq. �12�� is therefore

	�T� =
T


Ta

−1 , �33�

and the integral defining the function h�T� �Eq. �13�� can be
performed analytically:

h�T� =
Ta

�3−n�

�2
 − n + 1�q2l22
	� T

Ta
��2
−n+1�

− 1
 . �34�

The force profile �11� is then given by

f�T;�� =
�

T
−

�T�2
−n�

l12Ta
2�
−1��1 + �h�T��

, �35�

where �, 
, and h�T� are defined in Eqs. �31�, �32�, and �34�,
respectively.

According to Eq. �32�, the existence of particular solu-
tions of the form f0�T�=� /T is guaranteed for n�2 and also
for n�2 when �q� is not too small. The simplest situations
correspond to n=1 �
= �1 / �q�� and n=2 �
=0,1�; the case
n=0 �constant Lij� was considered in �19�. Irrespective of the
value of n, the coefficient 
 is real for �q�=1. In such a case,
one of its two possible values is 
=1, so that 	�T�=T and
Eqs. �34� and �35� correspond to the force profile �16� for the
specific set of transport coefficients defined by Eq. �30�.
These models cannot be generally reduced when �q��1 to
the simple scheme discussed in the previous section of a
chain with �q�=1 plus a heat leak. The reason is that Eq. �22�
cannot be satisfied for a constant �T-independent� heat leak
except for n=2.

IV. COLLECTIVE OPERATION REGIMES

The integration constant � in the solutions Eq. �11� of the
Ricatti differential equation determines which kind of energy
converter we have. Let us assume that Ta�Tb: when �q�=1 a
closer inspection of Eqs. �17� and �18� shows that the system
works as a refrigerator �J�x��0, i.e., heat flows up the tem-

perature gradient and the power Ẇ�0 is consumed by the
array� for −1 /h�b����0, while it works as an engine

�J�x��0 and Ẇ�0� only for 0��� �1 /�−1� /h�T2� �Fig.
2�. Finally, when �� �1 /�−1� /h�b� heat flows down the
temperature gradient and work is dissipated into the reser-
voirs.

But � can be furthermore viewed as a control parameter
which allows us to select different operation regimes when
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the chain works as a heat engine or as a refrigerator. In both
cases two natural figures of merit can be proposed immedi-
ately: an efficiency defined as the ratio between the useful
energy extracted from the device and the input energy, and
the useful energy extracted from the device. These figures of
merit correspond to the thermodynamic efficiency and the
output power in the case of heat engines, and to the COP and
the cooling power �that is, the heat extracted from the colder
reservoir per unit of time or per cycle� when the device
works as a refrigerator.

In addition to efficiencies and useful energies, one can
consider different figures of merit. Since “one can’t have it
all” �21� some compromise-based criteria have been pro-
posed �4–7,9,10�, some of them inspired by economic �6� or
ecological �22� considerations. Here we consider the so-
called � criterion �23�, which is based on a figure of merit
that does not depend on particular derivations of the entropy
production nor on external parameters to the heat device. It
represents a trade-off between useful energy delivered and
energy lost by any energy converter that is specially easy to

implement. When the chain works as a heat engine this fig-
ure of merit �the � function� can be written as

���� = 2Ẇ��� − ��max + �min�Ja��� , �36�

where �max and �min denote, respectively, the maximum and
minimum efficiencies of the chain upon variation of the pa-
rameter �. On the other hand, when the chain works as a
refrigerator the � function now reads

���� = 2Ja��� − ��max + �min�Ẇ��� , �37�

where �max and �min represent the maximum and minimum
COPs of our system. The � function gives a performance
regime placed between those of maximum efficiency and
maximum useful energy which has been been found in mac-
roscopic FTT models �23�, in mesoscopic systems rectifying
thermal fluctuations �24–26� �Brownian motors �27,28��, or
even in quantum heat devices �29�; we will consider it in the
following together with efficiencies and useful energies as a
figure of merit to be optimized.

A. Heat engines

The most popular performance criteria for heat engines is
the thermodynamic efficiency. When the chain works as an
engine �Fig. 2 ��0� and assuming that Ta�Tb, it can be
written as

���� =
Ẇ���
Jb���

= 1 −
Ja���
Jb���

. �38�

The power is also a commonly considered figure of merit in
engines. The parametric plot of efficiency versus power is an
open curve typical of endoreversible Carnot-like models for
�q�=1, while for �q��1 the plot becomes loop shaped where
maximum efficiency and maximum power are close but non-
coincident points �Fig. 3�a��, in agreement with results of
real heat engines and with predictions of irreversible models
in FTT �8–10�.

1. Maximum efficiency

The maximum efficiency regime usually corresponds to a
value of the parameter �=�� determined by the equation

FIG. 2. Ja=J�a� �solid line�, Jb=J�b� �dashed line�, and Ẇ �dot-
dashed line� vs � �Eqs. �17� and �18�� in a model with Onsager
coefficients given by Eqs. �30�–�35� with parameters �in arbitrary
units� n=2, l11= l22=1, Ta=0.5, Tb=1, and q=1.

FIG. 3. �a� Power output vs efficiency in an engine model based on Eqs. �30�–�35� with parameters �in arbitrary units� n=2, l11= l22

=1, Ta=0.5, and Tb=1. From top to bottom: q=1, 0.9, and 0.85. �b� Efficiency vs the coupling strength parameter q for the same engine
model at maximum efficiency �solid line�, maximum power �dashed line�, and maximum � �dot-dashed line�. �c� Power output vs q for the
same model and operation regimes.
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����� /��=0. Figure 3�b� shows that the maximum effi-
ciency is an increasing function of the coupling strength pa-
rameter which attains the Carnot limit at �q�=1.

This limit can be easily analyzed, since for �q�=1 the ef-
ficiency �38� is a strictly decreasing function of �,

���� = 1 − �1 + �h�b��
Ta

Tb
, �39�

and therefore the maximum efficiency is reached at the be-
ginning of the engine interval, ��=0. Such a result is not
surprising, since for �=0 we have f�x�= fstop�x� �Eq. �15��, so
that every engine unit in the chain is in equilibrium and
works with an efficiency given by the Carnot value ��x�
=�T�x� /T�x�. Because of the invariance of the Carnot effi-
ciency under the coupling of engines �16�, the whole chain
amounts to a single equilibrium engine working between the

temperatures Ta and Tb with Ẇ=0 and its efficiency is given
by the Carnot bound. We mention that, due to the reversible
behavior of engines near equilibrium, the sign of the heat
fluxes and the power changes upon variation of � in the
neighborhood of �=0 �Fig. 2�.

2. Maximum power

The maximum power regime of the chain is characterized

by means of the equation �Ẇ��� /��=0. Figures 3�b� and
3�c� show that in this regime both the efficiency and the
output power are increasing functions of the coupling
strength parameter for q�0. In addition, the efficiency at-
tains the Curzon-Ahlborn value in the limit �q�→1.

We will show in the following that the Curzon-Ahlborn
efficiency is a fundamental result in linear irreversible ther-
modynamics for chains of coupled heat engines working at
maximum power along arbitrary temperature profiles with no
other restrictions imposed on the Onsager coefficients than
that the coupling strength parameter �8� satisfies �q�x��=1.

Solving the equation �Ẇ��� /��=0, we get after some alge-
bra a second-order equation with two roots of opposite sign.
The negative root must be discarded, since it lies outside the
allowed interval �−1 /h�b� , +��. Substituting the positive
root

�Ẇ = h�b�−1��Tb

Ta
− 1� �40�

in Eq. �18� gives the maximal power output �Fig. 3�c��,

Ẇmax = − h�b�−1��Tb − �Ta�2, �41�

which mimics familiar results in FTT with the factor h�b�−1

playing the role of an averaged thermal conductance between
Ta and Tb �8,9,14�. Finally, Eqs. �39� and �40� give the
Curzon-Ahlborn result for the efficiency at maximum power,

�CA = 1 −�Ta

Tb
. �42�

3. Maximum �

To define the � function when the chain works as an
engine �Eq. �36��, we must first find the maximum and mini-

mum values of the efficiency ��max and �min� upon variation
of the control parameter �. The value of �max follows from
the analysis of the maximum efficiency regime discussed in
Sec. IV A 1, while for the minimum efficiency one must take

�min=0, since Ẇ����0 when the chain works as an engine

and Ẇ����0 for � large enough. Because of the continuity

of Ẇ���, there is a special ��0 which cancels the power
output while Jb�0 so that �min=0. Equation �36� is therefore
completely determined and the solution of ����� /��=0 al-
lows us to identify the regime of maximum � which, as Figs.
3�b� and 3�c� show, corresponds to a performance placed
between those of maximum efficiency and maximum power.

We found in Sec. IV A 1 that the value of �max in Eq. �36�
is given by the Carnot efficiency for �q�=1. In this case the
maximum ���� is reached at

�� = h�b�−1��1 + �

2�
− 1� , �43�

where �=Ta /Tb. The efficiency �39� prescribed by �43� is

�� = 1 −���1 + ��
2

, �44�

a well-known result of some ecological endoreversible mod-
els in FTT �9,10,22,23�.

B. Refrigerators

When the chain works as a refrigerator a heat flux Ja���,
also known as the cooling power, is extracted from the cold
reservoir at temperature Ta at the cost of an expenditure of

power Ẇ���. The coefficient of performance, defined as

���� =
Ja���

Ẇ���
, �45�

plays therefore a similar role to that of the thermodynamic
efficiency in the case of heat engines.

The parametric plot 1 /� versus 1 /Ja is shown in Fig. 4�a�.
At �q�=1 a hyperboliclike behavior is observed, typical of
endoreversible models in FTT just accounting for external,
finite-time heat transfer losses. As �q� decreases the contribu-
tion of the smaller cooling powers Ja progressively trans-
forms into a monotonic increase, showing that the COP is
optimized at nonvanishing cooling powers, in agreement
with FTT models incorporating additional losses �9,10,30�.

An interesting feature of the refrigerator models based on
Eqs. �1�–�8� is that the cooling power �Fig. 4�c�� is bounded:
since Ja is a monotonically decreasing function of �, the
maximum cooling power is reached at the lower limit of the
physical interval, �=−1 /h�b�. At this point the power �Eq.
�18�� diverges to infinity while the cooling power Ja remains
finite so that the COP �Eq. �45�� drops to 0. Because of this
simple behavior of Ja, we will focus on two working regimes
only: maximum COP and maximum �.

1. Maximum COP

The analysis of the COP as a function of � follows similar
lines as for the efficiency in the case of engines. The solution
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of ����� /��=0 fixes the parameter �=�� associated with the
regime of maximum COP of the whole chain. This maximal
COP, as Fig. 4�b� shows, is an increasing function of the
coupling strength parameter �q� which attains the Carnot
bound at �q�=1.

This fact is easily corroborated by a direct analysis of the
COP when �q�=1. In such a case the COP is a strictly in-
creasing function of �:

���� =
�1 + �h�b���

1 − �1 + �h�b���
, �46�

where �=Ta /Tb. Therefore the maximum COP is reached at
the top of the refrigerator interval, ��=0. The force profile is
then given by f�x�= fstop�x� �Eq. �15�� and the chain attains
the Carnot COP for a reversible refrigerator,

�C =
�

1 − �
. �47�

The individual units work also as reversible refrigerators
with a COP given by the Carnot COP for the respective
working temperatures for the very same reasons as those
discussed in Sec. IV A 1 for the case of chains working re-
versibly as heat engines.

2. Maximum �

The definition of the � function when the chain works as
a refrigerator �Eq. �37�� makes use of the maximum and
minimum COPs �max and �min upon variation of the param-
eter � for a given temperature profile T�x� and a set of trans-
port coefficients. The value of �max follows from the kind of
analysis described in the previous section. On the other hand,
as mentioned above one can take safely �min=0; therefore the
� function is fully characterized and it only remains to solve
the equation ����� /��=0 to find the value �=�� that cor-
responds to the optimum regime.

This task is much easier when �q�=1, since the maximum
COP is given by the Carnot bound and �� can be derived in
full generality:

�� = h�b�−1� 1
�2 − �

− 1� . �48�

The COP at maximum � is then found to be

�� =
�

�2 − � − �
, �49�

which coincides with the known value in FTT �23�.

V. INDIVIDUAL OPERATION REGIMES

In this section we consider the behavior of the individual
devices when different collective working regimes of the
chain have been selected. To this end we compare the force
profiles which optimize a certain figure of merit for every
single device in the chain with those associated with the
corresponding optimum working regimes for the chain as a
whole. The procedure to find the force profile for such indi-
vidual optimum regimes is sketched in the case of maximum
efficiency; we only quote the result for other regimes.

A. Heat engines

1. Maximum efficiency

Let us consider the maximum efficiency regime of the
generic unit device depicted in Fig. 1. At first order in �x we
take as thermodynamic forces F1= f�x��x /T�x� and F2
= �1 /T�x����x with conjugate fluxes J1 and J2, respectively.

We also define transport coefficients L̄ij�x� such that Ji

= L̄i1�x�F1+ L̄i2�x�F2 for i=1,2. Therefore this engine deliv-

ers a power �Ẇ=T�x�J1F1 with an efficiency given by �
=T�x�J1F1 /J2. Solving the equation �� /�F1=0 gives the
force F1 which maximizes the efficiency of the engine, and
substituting then the above definitions of F1 and F2 one gets
in the limit �x→0 the force profile f�,loc�x� that locally
maximizes the efficiency of every device in the chain. If we

furthermore assume that L̄ij→Lij�x� as �x→0, the result is

FIG. 4. �a� Parametric plot of 1 /� vs 1 /Ja in a refrigerator model based on Eqs. �30�–�35� with parameters �in arbitrary units� n=2,
l11= l22=1, Ta=0.5, and Tb=1. From top to bottom: q=0.85, 0.9, and 1. �b� Maximum COP �solid line� and COP at maximum � �dot-dashed
line� as functions of q for the same model. �c� Cooling power vs q at maximum COP �solid line� and at maximum � �dot-dashed line� for
the same model. The dashed line is the maximum theoretical cooling power �see the text�.
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f�,loc�x� = �1 − �1 − q2�x��
L22�x�
L12�x�

T��x�
T�x�

, �50�

and the maximum efficiencies of the individual devices are
given by

�max�x� = �1 − �1 − q2�x�
q�x�

�2

�C�x� , �51�

where �C�x�=�T�x� /T�x� denotes the Carnot efficiency for
the working temperatures of the infinitesimal heat engines.

However, the force profile �50� does not satisfy Eq. �9� in
the most general case. This fact is apparent in Fig. 5�a�,
where the force profiles that maximize the efficiency for the
whole chain and for every engine unit are compared. The
surprise is that, in contrast to the case �q�x��=1, the engine
units work in different regimes. This observation is at first
sight quite paradoxical since at the end Eq. �9� is a conse-
quence of the conservation of energy expressed in the form
of Eq. �1� and of the transport equations �5� and �6�, the very
same ingredients that we have considered to perform the
analysis of the maximum efficiency regime of a generic unit
device.

The solution to this apparent paradox is that the force
profile �50� is the result of the analysis of a single engine
which does not take into account the couplings with neigh-
boring devices. On the contrary, the force profile �11� which
solves the differential Eq. �10� implicitly assumes the exis-
tence of the couplings in the form of a heat flux J�x� which
continuously varies along the chain as Eq. �1� predicts. As a
consequence of such couplings, when we put one unit to
work at maximum efficiency by means of a suitable force
�50�, the forces upon the rest of devices are automatically
prescribed by Eq. �1� or equivalently by the differential equa-
tion �9�, and these forces do not correspond in general to
local maximum efficiency regimes for every device. An ex-
ception is the case �q�x��=1, where at maximum efficiency
regime every engine unit works also at maximum efficiency
as mentioned above and therefore the force profile Eq. �50� is
a solution of Eq. �9�. The conclusion is that the analysis of
optimum operation regimes for the whole chain must be per-

formed globally in terms of the parameter �, but not by
means of a local analysis of the behavior of the individual
units which leads to force profiles as Eq. �50� which, except
for the maximum efficiency regime when �q�=1 or for spe-
cial choices of the transport coefficients �19�, are generically
incompatible with the couplings among the individual de-
vices.

2. Maximum power

The force profile that maximizes the power output �Ẇ�x�
of every engine unit along the chain can be obtained by
means of the analysis of a generic device which is entirely
analogous to the one performed in the previous section to
study the maximum efficiency regime of the individual units.
The result is

fẆ,loc�x� =
L12�x�

2L11�x�
T��x�
T�x�

=
q2�x�

2

L22�x�
L12�x�

T��x�
T�x�

, �52�

which in general does not satisfy Eq. �9� and differs from the
force profile prescribed by Eqs. �16� and �40� even for
�q�x��=1. In Fig. 5�b� we have plotted this last force profile
and the one that maximizes the power output of every engine
unit �Eq. �52�� with the result that both profiles coincide only
for a single engine unit.

3. Maximum �

Let us construct the “local” � function for the device
working as a heat engine between temperatures T�x� and
T�x+�x�. Taking into account Eq. �36� and the above defi-
nitions of thermodynamic fluxes for an infinitesimal device

placed at x the objective function now reads �=2�Ẇ
− ��max+�min�J2. By means of a suitable force F1 it is al-

ways possible to make �Ẇ=T�x�J1F1=0; hence �min=0. On
the other hand, we already know the maximum efficiency
�max of the device at x �Eq. �51��, therefore � is completely
determined. The maximization of this function with respect
to the thermodynamic force F1 implies a force profile which
in the limit �x→0 is

FIG. 5. �a� Force profile at maximum efficiency in an engine model based on Eqs. �30�–�35� with parameters �in arbitrary units� n=2,
l11= l22=1, Ta=0.5, and Tb=1 for q=1 �top solid line� and q=0.9 �bottom solid line�. The dashed line represents the force profile which
maximizes the efficiency of every engine unit separately �Eq. �50�� when q=0.9. �b� Force profile at maximum power in the same model for
q=1. The dashed line represents the force profile that maximizes the power of every engine unit separately �Eq. �52��. �c� Force profile at
maximum � in the same model for q=1. The dashed line represents the force profile that maximizes the � function of every engine unit
separately �Eq. �53��.

COUPLED HEAT DEVICES IN LINEAR IRREVERSIBLE … PHYSICAL REVIEW E 77, 041127 �2008�

041127-9



f�,loc�x� = 	1

2
+ �1 − �1 − q�x�2

2q�x�
�2
L12�x�

L11�x�
T��x�
2T�x�

. �53�

This expression also gives at �q�x��=1 a force profile which
in general differs from the one prescribed by Eqs. �16� and
�43�; see Fig. 5�c�.

B. Refrigerators

1. Maximum COP

The analysis of a generic refrigerator working between
temperatures T�x� and T�x+�x� gives the force profile which

locally maximizes its COP, �=J2 /�Ẇ. In the limit �x→0
the result is

f�,loc�x� = �1 + �1 − q�x�2�
L22�x�
L12�x�

T��x�
T�x�

. �54�

The maximum COP is then given by

�max = � q�x�
1 + �1 − q�x�2�2

�C�x� , �55�

where �C�x�=T�x� /�T�x� denotes the Carnot COP for the
working temperatures of this infinitesimal refrigerator.
Again, the force profile �54� in general does not satisfy Eq.
�9� and, except for �q�x��=1, does not coincide with the force
profile that maximizes the COP for the whole chain �Fig.
6�a��.

2. Maximum �

In order to apply the � criterion to the infinitesimal re-
frigerator working between temperatures T�x� and T�x+�x�,
one has to consider the function �=2J2− ��max+�min��Ẇ,
where �max is given by Eq. �53� and �min=0. The maximum
� corresponds to a force profile f�,loc�x� which in the limit
�x→0 reads

f�,loc�x� = 	1

2
+ �1 + �1 − q�x�2

q�x�
�2
L12�x�

L11�x�
T��x�
T�x�

. �56�

Figure 6�b� shows that the force profile given by Eq. �16�
together with the integration constant �=�� �Eq. �48�� dif-
fers from the one maximazing � for every individual refrig-
erator �Eq. �56�� even for �q�x��=1.

VI. SUMMARY

We have developed a theory that allows the detailed
analysis within linear irreversible thermodynamics of a wide
general class of nonisothermal energy converters: chains of
coupled heat engines and refrigerators working along arbi-
trary temperature profiles. The main result of our work is
summarized in Eq. �9�, which represents a differential equa-
tion linking thermodynamic forces and transport coefficients.
If the temperature profile and the transport coefficients are
known the force profile f�x� is determined up an integration
constant � which fixes the kind of energy converter we have
and its operation regime.

In the limit of perfectly coupled fluxes ��q�x��=1� the gen-
eral solution of Eq. �9� has been presented �Sec. III A� in
terms of simple expressions involving the temperature profile
and the transport coefficients so that the thermodynamic
quantities along the chain can be reduced to analytic form. In
Sec. IV we found that these chains share relevant features
with endoreversible models of FTT. Specifically, we have
derived from first principles of linear irreversible thermody-
namics known endoreversible efficiencies and coefficients of
performance, thus giving strong support to their validity and
generality. In view of these findings it seems plausible to
argue that a real device could approach such efficiencies or
COPs if the processes taking place in it are strongly coupled
and the global performance is optimized.

The general solution of Eq. �9� when �q�x���1 is un-
known to us. However, we have found some solutions for
special choices of the temperature profile or transport coef-
ficients �Secs. III B and III C� which reproduce the qualita-
tive behavior of irreversible FTT models of heat devices
�Sec. VI�. This observation is reinforced by the analysis pre-
sented in Sec. III B, where we showed that chains with
�q�x���1 can be decomposed into two auxiliary chains
working in parallel under the assumption that their common
temperature profile is given by Eq. �23�. The first chain has a
coupling-strength parameter �q�x��=1 so that its properties
are known in detail �Sec. III A�, and the second chain
amounts to a purely thermal contact between Ta and Tb that
gives rise to an irreversible heat leak which does not depend
on the working regime of the system. This kind of decom-
position closely reproduces the usual formulations of irre-
versible FTT models of heat devices. As in FTT, the heat

leak does not alter the net power Ẇ delivered or consumed
by the system but modifies the heat fluxes exchanged with

FIG. 6. �a� Force profile at maximum COP in
a refrigerator model based on Eqs. �30�–�35� with
parameters �in arbitrary units� n=2, l11= l22=1,
Ta=0.5, and Tb=1 for q=0.9 �solid line�. The
dashed line represents the force profile which
maximizes the COP of every refrigerator unit
separately �Eq. �54��. �b� Force profile at maxi-
mum � in the same refrigerator model for q=1.
The dashed line represents the force profile that
maximizes the � function of every refrigerator
unit separately �Eq. �56��.
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the reservoirs, thus implying a poorer performance concern-
ing the efficiency or the COP of the whole chain. The con-
clusion is that chains with �q�x���1 are intrinsically irrevers-
ible, since the irreversibilities cannot be attributed
exclusively to the operation regime. This is the case of
chains with �q�x��=1, where the reversible mode of operation
is always accessible for any temperature profile.

Finally, we realized that, in contrast to the assumptions
made in �16,18�, the relationship between the overall and
individual behaviors in chains of coupled energy converters
is far from obvious in the most general case. Clearly, they
both are fixed by means of a single parameter ���, but at first
sight it seems difficult to infer the overall working regime in
view of the behaviors of the device units. General exceptions
are the maximum efficiency and maximum COP regimes for
�q�x��=1: In such cases the individual devices and the chain
work in the same operation regime, but this coincidence is
due to the special conditions of the reversible mode of op-
eration. In any other situation, at least one could substitute in
the differential equation �9� some of the force profiles ob-
tained in Sec. V for local optimum regimes to obtain condi-
tions among the temperature profile and the transport coeffi-
cients ensuring that collective and individual behaviors
coincide �19�.

Besides these very particular cases, the rule is that we will
observe intricate individual behaviors which apparently have
nothing to do with the overall working regime. For instance,
it could happen that no device unit works in the same regime
as the one globally selected �Fig. 6�b��. Moreover, we men-
tioned previously that there exist some order relationships
among different working regimes: the power delivered at
maximum efficiency is usually low and the maximum power
regime has a poor efficiency so that the performances at
maximum efficiency and maximum power can be considered
as natural bounds to intermediate working regimes of heat
engines. In the case of chains working at maximum � we

can write the inequalities �Ẇ�����max and Ẇmax�Ẇ�

�Ẇ� �Figs. 3�b� and 3�c��. These inequalities do not hold
necessarily at the individual level, that is, a single unit device
could work with greater efficiency when the chain works at
maximum power �or maximum �� than when the chain
works at maximum efficiency. That is what is observed in
Fig. 7�a�, where we have plotted the normalized efficiency

� /�max of the units for different collective working regimes:
� are individual efficiencies in these regimes and �max de-
notes the maximum efficiencies of the devices �Eq. �51��.
Obviously, for �q�=1 the maximum efficiency regime of the
chain implies that � /�max=1 and the efficiency of every de-
vice will be lower when the chain works in any other regime,
but if �q��1 a much more intricate behavior is possible,
which indeed depends on the detailed properties of the sys-
tem. Similar remarks apply to refrigerators: in Fig. 7�b� we
have plotted normalized individual COPs �with respect to
maximum individual COPs, Eq. �55�� to show that the COP
of a single device can be lower when the chain works at
maximum COP than when it works at maximum �.

To sum up, not only does the force profile along the chain
in a certain collective working regime not generically opti-
mize the performance of any particular device, but even the
natural order relationships among different working regimes
can be violated at the individual level. The reason is that the
collective and individual behaviors, as well as the bridge
between these two levels of description, are mediated for the
specific set of transport coefficients and the temperature pro-
file we choose. In spite of these complex behaviors, we have
shown that when �q�x��=1 the overall efficiency or COP ex-
hibits a kind of universality: they become functions of �
=Ta /Tb which are independent of the detailed structure of
the system �i.e., of the specific form of the temperature pro-
file and transport coefficients 
Lij�x��� in several operation
regimes. These observations could be of interest in various
problems which arise in natural and social sciences, where a
variety of agents must cooperate to accomplish some task:
organelles within the living cell, division of labor within an
insect colony, or assembly-line workers in a factory, to name
but a few. One fundamental problem in analyzing such sys-
tems is to assess how the specific agents’ behaviors affect the
overall performance and how to define a unified thermody-
namic principle governing these complex, nonequilibrium
systems.
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FIG. 7. �a� Normalized efficiencies of indi-
vidual heat devices �see the text� for an engine
model based on Eqs. �30�–�35� at maximum effi-
ciency �solid line�, maximum work �dashed line�,
and maximum � �dot-dashed line�. Parameters in
arbitrary units are n=2, l11= l22=1, Ta=0.5, Tb

=1, and q=0.8. �b� Normalized COPs of indi-
vidual heat devices for a refrigerator model based
on the same equations and parameters as the pre-
vious one at maximum COP �solid line� and
maximum � �dot-dashed line�.
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