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Many processes  are  given by a  system of  ordinary differential  equations,  very  often without  an

analytical  solution.  When  there  are  unknown  parameters,  that  need  to  be  estimated,  optimum

experimental  design  approach  offers  quality  estimators  for  the  different  objectives  of  the

practitioners.  But  almost  every  optimality  criteria  needs  to  deal  with  the  linearized  model  for

computing optimal designs, and this can be a great problem when it is not possible to obtain the

analytical form of the model. In this work, a procedure for findingoptimal designs for models given

as solutions to a system of ordinary differential equations is described. Some important models like

the compartmental one, are studied through actual case studies, obtaining the corresponding optimal

designs.

In[1]:= $Version

Out[1]= 9.0 for Microsoft Windows H64-bitL HJanuary 25, 2013L

Overview of  compartmental and biokinectic equivalents models

Compartmental analysis has applications in clinical medicine, pharmacokinetics, internal dosimetry, nuclear medicine, ecosystem studies

and chemical reaction kinetics.  It can be described as the analysis of a system in terms of compartments which separate the system into a

finite number of component parts which are called compartments. Compartments interact through the exchange of species. Species may be a

chemical substance, hormone, individuals in a population and so on.  A compartmental system is usually represented by a flow diagram or a

block diagram. A general introduction to this theory can be found in Anderson (1983), Godfrey (1983) and Jazquez (1985).



We adopt the convention of  representing compartments with circles or rectangles. The flow into or out of the compartments is represented

by arrows.  The ith compartment  of a system of n compartments is labelled i and the size (amount or content) of the component in compart-

ment  i as xi HtL. The exchange between compartments, or between a compartment and the environment is labeled kij, where i represents the

flow from i to j. The environment is usually represented by "0" (zero), so ki0  is the fractional excretion coefficient from the i-th compart-

ment to the outside environment.  The  input from the environment into the j-th compartment is called b jHtL. Environment represents the

processes that are outside the system. With regards to the environment, we only need to know the flow, b jHtL,  into the system from the

outside. The kij are called fractional transfer rate coefficients and they may be a function of different variables or constants. 
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Figure 1. The general tricompartmental system.

Figure 1 represents  the general tricompartmental model with one input and output in each compartment. If we suppose that the substance

introduced into the system is a radioactive isotope we mush considered the radioactive decay, it is given by a constant rate represented by Λ

(decay constant), it is specific for each isotope (obviously Λ = 0 if no radioactive substances are presents or they are long life isotopes) . The

decay constant can be interpreted by an equal flow going out of the system in each compartment. The model can be represented by the

follow ODE System 

x1 ' HtL = b1HtL - Hk10 + k12 + k13 + ΛL x1HtL + k21 x2HtL + k31 x3HtL
x2 ' HtL = b2HtL + k12 x1HtL - Hk20 + k21 + k23 + ΛL x2HtL + k32 x3HtL
x3 ' HtL = b3 HtL + k13 x1HtL + k23 x2HtL - Hk30 + k31 + k32 + ΛL x3HtL

in matrix notation 

x1 ' HtL
x2 ' HtL
x2 ' HtL

=

a11 a12 a13

a21 a22 a23

a31 a32 a33

x1HtL
x2 HtL
x2 HtL

+

b1 HtL
b2 HtL
b3 HtL

with

a11 = - Hk10 + k12 + k13 + ΛL ; a12 = k21; a13 = k31;

a21 = k12; a22 = - Hk20 + k21 + k23 + ΛL ; a23 = k32;

a31 = k13; a32 = k23; a33 = - Hk30 + k31 + k32 + ΛL;

In some circumstances, instead of compartments we have parts o process than can be represented by transference between Different parts,

for example,  when blood flow or other physiological parameter is  measured. In those circumstances the transfer rate constants kij  are

associated with physiologically meaningful values that correspond to the measured physiological parameter or may be a function of them.

However, if the physiological parameters are constants models are mathematically equivalent with compartmental models. We will refer in

general to kinetic models. 

The patterns that we have seen can be expanded to systems of n compartments or n state variables (in the case of physiological models). The

equation for any compartment i in notation matrix is given by

(1)
x
  HtL = A xHtL + bHtL, t ³ 0

xH0L = x0
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where:

xHtL = 8x1HtL, x2HtL, ..., xnHtL<T  is a column vector and xi(t) denote the amount or content of species in compartment i at time t. 

A  is  a n � n  is  usually known as the system matrix given by coefficients aij= g(kij)  where kij  are constant specifics of each model (in

compartmental models they are obtained in the form that has been descried)  

bHtL = 8b1HtL, b2HtL, ..., bnHtL<T is a column vector where {biHtL} is the input rate into compartment i from outside system. 

xH0L  = 8x1H0L, x2H0L, ..., xnH0L< Tare the initial conditions, so xiH0L, represents the amount or content of species in compartment i at time

t = 0. 

The solution of eq(1) when the coeffs aij are constants is eq(2)

(2)x HtL = x0 ExpHA tL + ExpHA tL * bHtL
where * denotes convolution,

ExpHA tL * bHtL = à
0

t

Exp@Ht - ΤL AD bHΤL â Τ

Sometime Laplace transforms are used to solve eq (1). 

(3)X HsL = Hs I - AL -1
x0 + Hs I - AL -1

BHsL
where X HsL and BHsL are the Laplace transforms of xHtL and bHtL. Then evaluating the inverse Laplace transformation is obtained: 

(4)x HtL = L-1 Hs I - AL -1
x0 + L-1KHs I - AL -1

BHsLO
Both methods are used for BIOKMOD software for solving eq.(1) developped for ones of the authors.

In  many  circumstance  some  parameters  of   biokinetic  models  represented  by  eq.  (1)  (one  o  more  kij  coefficients),  that  we  will

call Β = 9 Β1, ..., Βp = , are unknown an they are estimated by fitting experimental data. It means that we measure yiHtL, being yiHtL = xi(t,

Β)+Ε, for different moments of t: y
`

i
Ht0L ,  ..., y`

i
HtnL. Then we estimated Β = 9 Β1, ..., Βp =  by fitting  yiHtL and y

`
i
HtL.

We propose chose the best moments {t0,..,  ti, ...  tn} to take the experimental data. It  it can be done using techniques of Optimal Design of

Experiment (ODE), in particular we chose apply a  D-optimal design.

In a D-optimal design  the values of {t1,..,  ti, ...  tn} (ti is the time when the i-th sample should be taken) are given in the points that leads

the determinant of the Fisher information matrix (M) to a maximum.  The process to obtain M will be described later (it can be found in

Hill, P. D. H., 1980, D-optimal designs for partially nonlinear regression models. Technometrics 22:275–276).   

Derivatives 

The  standard method to obtain the maximum of Det|M| requires to know the analytical expression of xi(t, Β). In this paper we propose a

method to compute the D-optimal design in biokinetic system descried by ODE with the pattern of eq (2) when analytical expression of xi(t,

Β) cannot be obtained. 

In the D-optimal design method the derivatives with respect to Β must be evaluated 

We used a subscript in parentheses to denote differentiation with respect to a parameter, so ¶ x � ¶ Β = xIΒM.
When in eq(1) A depends of Β, but not b(t) and x0 we can get the derivatives of  xi(t, Β) by differentiation of eq.(1) 

(5)x
 

H pLHtL = A xI pMHtL + AH pL xHtL
Then, using  eq(2) 

xH pL HtL = ExpIA tL xI pMH0L + ExpHA tL * AAH pL x HtL E =

ExpIA tL xI pMH0L + ExpIA tL * AAH pL ExpHA tL x0E + ExpIA tL * AH pL ExpHA tL * bHtL
(6)xH pL HtL = ExpIA tL xI pMH0L + AH pL x0 Exp IA tL * ExpHA tL + AH pL ExpHA tL * ExpHA tL * bHtL

As xH0L = x0  Þ xI pMH0L=0 therefore: 

(7)xH pL HtL = AH pL x0 Exp IA tL * ExpHA tL + AH pL ExpHA tL * ExpHA tL * bHtL
In the the particular case that the input happen in t = 0, that is  xH0L = x0 with  b(t)=0 for t > 0. Then

(8)xH pL HtL = AH pL x0 Exp HA tL * ExpHA tL
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ExpHA tL * ExpHA tL = à
0

t

Exp@Ht - ΤL AD ExpHA ΤL â Τ

The iodine model 

The model

Let's consider the iodine biokinetic model represented in the figure 2 (ICRP 78) where compartment 1 is the blood, compartment 2 is the

thyroid, compartment 3 is the rest of the body, compartment 4 is the bladder,  3 ® 0, i.e. a transfer from compartment 3 to the environment,

represents the output to the gastro intestinal tract (GIT) and 4 ® 0 represents the output, via urine excretion, to the environment. In the

follow we won`t consider compartment 4 that is not relevant in our case. We will assume a flow from compartment 1 to outside given by a

transfer coefficients k10.  The coefficient transfer values, in days-1, taken from ICRP 78 are k10= 1.9404,  k30= 0.01155 and k31= 0.0462.

We will suppose that k12  and k23  are unknown, although we know that their values will be about  k12 = 0.8 and k23 = 0.0078. We wish

estimate them taken experiment  data from compartment 1 . The problem consist on decide by DOE the best moment to taken the sample.   
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k14

4

k40

2

k23
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Figure 2. Iodine biokinetic models (ICRP 78)

Here it is downloaded the package Sysmodel (included in the Biokmod Tool available in http://www3.enusa.es/webMathematica/Public/Doc-

s/biokmod.zip)

In[2]:= Needs@"Biokmod`SysModel`"D
SysModel, version 1.5.1 2013-11-12

In this example it is assumed an input into b1(t) compartment 1 is given by 

In[3]:= B = 9-27.13 ã-24.08 t + 27.13 ã-2.86 t - 0.020 ã-0.147 t + 0.0194 ã-0.093 t
, 0, 0=;
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In[4]:= Plot@B@@1DD, 8t, 0, 3<, AxesLabel ® 8"days", "r"<D

Out[4]=
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This kind of input happens in real situations when there is an input from the GIT (Gastro Intestinal) to the blood, for instance if the iodine is

intaken by orally. Then b1(t) represents the input from GIT to blood. (When the input happens by inhalation the flow to the blood can be

represented by 34.4 ã-200. t + 1.09 ã-110. t + 0.808 ã-102. t + 6.414 ã-100. t + 5.458 ã-24. t   that is the function used in the article). The initial

condition are 8 0, 0, 0<. 
In this kind of experiment usually is used a isotope of iodine with a decay constant Λ (his value depend on the isotope). The coefficients

matrix is: 

In[5]:= A =

CompartMatrix@3, 881, 2, k12<, 81, 0, 1.9404<, 82, 3, k23< , 83, 0, 0.01155< ,

83, 1, 0.0462<<, ΛD �� Chop �� TraditionalForm

Out[5]//TraditionalForm=

-k12 - Λ - 1.9404 0 0.0462

k12 -k23 - Λ 0

0 k23 -Λ - 0.05775

In[6]:= ShowODE@88-1.9404 - k12 - Λ, 0, 0.0462<, 8k12, -k23 - Λ, 0<, 80, k23, -0.05775 - Λ<<,
80, 0, 0<, B, t, xD �� TraditionalForm

Out[6]//TraditionalForm= 9x1
¢HtL � H-Λ - k12 - 1.9404L x1HtL + 0.0462 x3HtL - 27.13 ã

-24.08 t
+ 27.13 ã

-2.86 t
- 0.02 ã

-0.147 t
+ 0.0194 ã

-0.093 t,

x2
¢HtL � k12 x1HtL + H-Λ - k23L x2HtL, x3

¢HtL � k23 x2HtL + H-Λ - 0.05775L x3HtL, x1H0L � 0, x2H0L � 0, x3H0L � 0=
We represent the evolution of the iodine content in the compartment 1 where the samples will be taken  (using k12 = 0.8 and k23 = 0.0078).

We will refer to iodine 131 which has a radioactive half-life of 8 days, this meaning that radioactive decay constant Λ = ln 2/8.02  day-1.

Then the compartmental matrix is:

In[7]:= iodine131matrix =

CompartMatrix@3, 881, 2, 0.8<, 81, 0, 1.9404<, 82, 3, 0.0078< ,

83, 0, 0.01155< , 83, 1, 0.0462<<, Log@2D � 8.02D
Out[7]= 88-2.82683, 0., 0.0462<, 80.8, -0.0942273, 0.<, 80., 0.0078, -0.144177<<

In[8]:= 8 x1@t_D, x2@t_D, x3@t_D< =

8x1@tD, x2@tD, x3@tD< �. SystemDSolve@iodine131matrix, 80, 0, 0<, B, t, t, xD ��
Chop;
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In[9]:= LogPlot@x1@tD, 8t, 0, 50<, PlotRange ® All, AxesLabel ® 8"days", "r"<D

Out[9]=
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The form of the first interval it is explained because in during this interval   (about 3 days) is happening a input b1(t) to compartment 1 and

negligible flow from other compartments reach the compartment 1. In the second interval the opposite happens.

We wish obtain xiIΒM =  {¶xi/¶k12, ¶xi/¶k23} , i = {1,2,3} to be used later for computing the Optimal Design.

We are going to apply different methods to obtain xIΒM in order to make a comparison.  Each method is computated in a new Mathematica

session in order to compare the computation time. 

In[1]:= Quit@D
Method 1

Here will be obtain xIΒM using eq(5) that we call the method of the extended matrix.

We call : Xa = :x1a =
¶ x1Ht, k12L

¶ k12

, x2a =
¶ x2Ht, k12L

¶ k12

, x3a =
¶ x3Ht, k12L

¶ k12

> and Ak12 = AHk12L ;

Xb = :x1b =
¶ x1Ht, k23L

¶ k23

, x2a =
¶ x2Ht, k23L

¶ k23

, x3a =
¶ x3Ht, k23L

¶ k23

> and Ak23 = AHk23L

In[1]:= Needs@"Biokmod`SysModel`"D
SysModel, version 1.5.1 2013-11-12

In[2]:= A =

CompartMatrix@3, 881, 2, k12<, 81, 0, 1.9404<, 82, 3, k23< , 83, 0, 0.01155< ,

83, 1, 0.0462<<, Log@2D � 8.02D �� Chop

Out[2]= 88-2.02683 - k12, 0, 0.0462<, 8k12, -0.0864273 - k23, 0<, 80, k23, -0.144177<<

In[3]:= B = 9-27.13 ã-24.08 t + 27.13 ã-2.86 t - 0.020 ã-0.147 t + 0.0194 ã-0.093 t
, 0, 0=;

In[4]:= X = 8x1@tD, x2@tD, x3@tD<;
In[5]:= eq1 = Thread@D@X, tD � A.X + BD

Out[5]= 9x1
¢@tD � -27.13 ã

-24.08 t
+ 27.13 ã

-2.86 t
-

0.02 ã
-0.147 t

+ 0.0194 ã
-0.093 t

+ H-2.02683 - k12L x1@tD + 0.0462 x3@tD,

x2
¢@tD � k12 x1@tD + H-0.0864273 - k23L x2@tD, x3

¢@tD � k23 x2@tD - 0.144177 x3@tD=

In[6]:= ic1 = 8x1@0D == 0, x2@0D == 0, x3@0D == 0 <;
In[7]:= Xa = 8x1a@tD, x2a@tD, x3a@tD<;
In[8]:= Xb = 8x1b@tD, x2b@tD, x3b@tD<;
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In[9]:= Ak12 = D@A, k12D
Out[9]= 88-1, 0, 0<, 81, 0, 0<, 80, 0, 0<<

In[10]:= Ak23 = D@A, k23D
Out[10]= 880, 0, 0<, 80, -1, 0<, 80, 1, 0<<

In[11]:= eq2 = Thread@D@Xa, tD == Ak12.X + A.XaD
Out[11]= 8x1a

¢@tD � -x1@tD + H-2.02683 - k12L x1a@tD + 0.0462 x3a@tD,

x2a
¢@tD � x1@tD + k12 x1a@tD + H-0.0864273 - k23L x2a@tD,

x3a
¢@tD � k23 x2a@tD - 0.144177 x3a@tD<

In[12]:= eq3 = Thread@D@Xb, tD == Ak23.X + A.XbD;
In[13]:= ic2 = 8x1a@0D == 0, x2a@0D == 0, x3a@0D == 0 <;
In[14]:= ic3 = 8x1b@0D == 0, x2b@0D == 0, x3b@0D == 0 <;

Now eq1 and eq2, and the respective initial conditions ic1 and ic2 are combined obtaining the eq4  

In[15]:= eq4 = Join@eq1, eq2 , ic1, ic2D �� Chop

Out[15]= 9x1
¢@tD � -27.13 ã

-24.08 t
+ 27.13 ã

-2.86 t
-

0.02 ã
-0.147 t

+ 0.0194 ã
-0.093 t

+ H-2.02683 - k12L x1@tD + 0.0462 x3@tD,

x2
¢@tD � k12 x1@tD + H-0.0864273 - k23L x2@tD, x3

¢@tD � k23 x2@tD - 0.144177 x3@tD,

x1a
¢@tD � -x1@tD + H-2.02683 - k12L x1a@tD + 0.0462 x3a@tD,

x2a
¢@tD � x1@tD + k12 x1a@tD + H-0.0864273 - k23L x2a@tD,

x3a
¢@tD � k23 x2a@tD - 0.144177 x3a@tD, x1@0D � 0,

x2@0D � 0, x3@0D � 0, x1a@0D � 0, x2a@0D � 0, x3a@0D � 0=

In[16]:= eq5 = Join@eq1, eq3 , ic1, ic3D �� Chop

Out[16]= 9x1
¢@tD � -27.13 ã

-24.08 t
+ 27.13 ã

-2.86 t
-

0.02 ã
-0.147 t

+ 0.0194 ã
-0.093 t

+ H-2.02683 - k12L x1@tD + 0.0462 x3@tD,

x2
¢@tD � k12 x1@tD + H-0.0864273 - k23L x2@tD, x3

¢@tD � k23 x2@tD - 0.144177 x3@tD,

x1b
¢@tD � H-2.02683 - k12L x1b@tD + 0.0462 x3b@tD,

x2b
¢@tD � k12 x1b@tD - x2@tD + H-0.0864273 - k23L x2b@tD,

x3b
¢@tD � x2@tD + k23 x2b@tD - 0.144177 x3b@tD, x1@0D � 0,

x2@0D � 0, x3@0D � 0, x1b@0D � 0, x2b@0D � 0, x3b@0D � 0=

Them eq4 and eq5 can be solved  when specific values of t, k12 and k23 are given 

In[17]:= fa@a_?NumberQ, b_?NumberQ, t1_?NumberQD :=

Evaluate@8x1a@tD, x2a@tD, x3a@tD< �.
NDSolve@Evaluate@eq4 �. 8k12 ® a, k23 ® b<D, Join@X, XaD, 8t, 0, 100<DD �. t ® t1

In[18]:= fb@a_?NumberQ, b_?NumberQ, t1_?NumberQD :=

Evaluate@8x1b@tD, x2b@tD, x3b@tD< �.
NDSolve@Evaluate@eq5 �. 8k12 ® a, k23 ® b<D, Join@X, XbD, 8t, 0, 100<DD �. t ® t1

Then  xI pMHtL :{x1a[t]  x1b[t]}. 

In[19]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD@@1, 1DD, fb@a, b, tiD@@1, 1DD<
So for a=k12 = 0.80; b= k23= 0.0078, then xI pMHtL :{x1a[t], x2a[t],x3a[t]} for t = {1,10,30} are (The computation time, in s, is the first

value of the Output.)
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In[20]:= Map@X1@0.80, 0.0078, ðD &, 81, 10, 30<D �� AbsoluteTiming

Out[20]= 80.062506,

88-0.722177, 0.00668556<, 80.000125787, 0.115799<, 80.0000414039, 0.0350599<<<

Other option faster than the previous is using the new function (Mathematica 9 or later is requiered)   ParametricNDSolve .

In[21]:= eq4a = ParametricNDSolve@eq4, 8x1, x2, x3, x1a, x2a, x3a<, 8t, 0, 100<, 8k12, k23<D;
In[22]:= eq5a = ParametricNDSolve@eq5, 8x1, x2, x3, x1b, x2b, x3b<, 8t, 0, 100<, 8k12, k23<D;
In[23]:= fa@a_?NumberQ, b_?NumberQ, t_?NumberQD := x1a@a, bD@tD �. eq4a

In[24]:= fb@a_?NumberQ, b_?NumberQ, t_?NumberQD := x1b@a, bD@tD �. eq5a

In[25]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD, fb@a, b, tiD<
So for a=k12 = 0.80; b= k23= 0.0078, then xI pMHtL :{x1a[t], x2a[t],x3a[t]} for t = {1,10,30} are (The computation time, in s, is the first

value of the Output.)

In[26]:= Map@X1@0.80, 0.0078, ðD &, 81, 10, 30<D �� AbsoluteTiming

Out[26]= 80., 88-0.722177, 0.00668556<, 80.000125787, 0.115799<, 80.0000414039, 0.0350599<<<

In[27]:= Quit@D
Method 2

This method give the solution as function of the unknown parameters (k12 and k23) then when are given specific values of k12 and k23 the

ODE is  numerically solved and the derivatives xIΒM  evaluated numerically in each point. To solve the ODE is used  the Biomod function

SystemDSolve (it applies the Mathematica function NDSolve).

In[1]:= Needs@"Biokmod`SysModel`"D
SysModel, version 1.5.1 2013-11-12

In[2]:= A@k12_, k23_D =

CompartMatrix@3, 881, 2, k12<, 81, 0, 1.9404<, 82, 3, k23< , 83, 0, 0.01155< ,

83, 1, 0.0462<<, Log@2D � 8.02D �� Chop

Out[2]= 88-2.02683 - k12, 0, 0.0462<, 8k12, -0.0864273 - k23, 0<, 80, k23, -0.144177<<

In[3]:= model@t1_?NumberQ, k12_?NumberQ, k23_?NumberQD :=

model@t1, k12, k23D = 8x1@t1D, x2@t1D, x3@t1D< �.
SystemNDSolveAA@k12, k23D, 80, 0, 0<,

9-27.13 ã-24.08 t + 27.13 ã-2.86 t - 0.020 ã-0.147 t + 0.0194 ã-0.093 t
, 0, 0= ,

8t, 0, 100<, t1, xE;
Note: Instead of the before function can be used the following function that solved analytically the ODE when k12 and k23 take numeric

values but the take of computation is too longer

model@t1_?NumberQ, k12_?NumberQ, k23_?NumberQD :=

model@t1, k12, k23D = 8x1@t1D, x2@t1D, x3@t1D< �. SystemDSolve@8 ...< , t, t1, xD;

We use the package NumericalCalculus to compute the numerical derivations

In[4]:= Needs@"NumericalCalculus`"D
We call fa(t1, k12, k23)=9 ¶x1Ht,k12L

¶k12

,
¶x2Ht,k12L

¶k12

,
¶x3Ht,k12L

¶k12

= and fb(t1, k12, k23)=9 ¶x1Ht,k23L
¶k23

,
¶x2Ht,k23L

¶k23

,
¶x3Ht,k23L

¶k23

= (for conve-

nience we write a1, b2 instead of  k12, k23)

Note that sometime the option ND[model[ti,x,b1],x,a1,Scale->.01] should be  used (see ND Help) 
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In[5]:= fa@a1_, b1_, ti_D := ND@model@ti, x, b1D, x, a1D
In[6]:= fb@a1_, b1_, ti_D := ND@model@ti, a1, yD, y, b1D

Now we test the method using the same values that in the previous example, that is  k12 = 0.80; k23 = 0.0078;

In[7]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD@@1DD, fb@a, b, tiD@@1DD<
In[8]:= Map@X1@0.80, 0.0078, ðD &, 81, 10, 30<D �� AbsoluteTiming

Out[8]= 80.406247,

88-0.722124, 0.00666625<, 80.000125691, 0.115797<, 80.0000413294, 0.0349157<<<

The solution  is almost the same that the obtained using Method 1 and the computation time is a bit bigger. 

In[9]:= Quit@D
Method 3

This method is similar to Method 2 but here is used the new Mathematica (9 o later) funcion ParametricNDSolve . 

In[1]:= Needs@"Biokmod`SysModel`"D
SysModel, version 1.5.1 2013-11-12

In[2]:= A =

CompartMatrix@3, 881, 2, k12<, 81, 0, 1.9404<, 82, 3, k23< , 83, 0, 0.01155< ,

83, 1, 0.0462<<, Log@2D � 8.02D �� Chop

Out[2]= 88-2.02683 - k12, 0, 0.0462<, 8k12, -0.0864273 - k23, 0<, 80, k23, -0.144177<<

In[3]:= B = 9-27.13 ã-24.08 t + 27.13 ã-2.86 t - 0.020 ã-0.147 t + 0.0194 ã-0.093 t
, 0, 0=;

In[4]:= eqs = ShowODE@A, 80, 0, 0<, B, t, xD
Out[4]= 9x1

¢@tD � -27.13 ã
-24.08 t

+ 27.13 ã
-2.86 t

- 0.02 ã
-0.147 t

+ 0.0194 ã
-0.093 t

+

H-2.02683 - k12L x1@tD + 0.0462 x3@tD, x2
¢@tD � k12 x1@tD + H-0.0864273 - k23L x2@tD,

x3
¢@tD � k23 x2@tD - 0.144177 x3@tD, x1@0D � 0, x2@0D � 0, x3@0D � 0=

In[5]:= sol = ParametricNDSolve@eqs, 8x1, x2, x3<, 8t, 0, 100<, 8k12, k23<D
Out[5]= 8x1 ® ParametricFunction@<>D,

x2 ® ParametricFunction@<>D, x3 ® ParametricFunction@<>D<

In[6]:= fa@a1_?NumberQ, b_?NumberQ, t_?NumberQD := D@x1@a, bD, aD@tD �. a ® a1 �. sol

In[7]:= fb@a_?NumberQ, b1_?NumberQ, t_?NumberQD := D@x1@a, bD, bD@tD �. b ® b1 �. sol

In[8]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD, fb@a, b, tiD<
So for a=k12 = 0.80; b= k23= 0.0078, then xI pMHtL :{x1a[t], x2a[t],x3a[t]} for t = {1,10,30} are (The computation time, in s, is the first

value of the Output.)

In[9]:= Map@X1@0.80, 0.0078, ðD &, 81, 10, 30<D �� AbsoluteTiming

Out[9]= 80.249968,

88-0.722177, 0.00668556<, 80.000125827, 0.115799<, 80.0000414037, 0.0350599<<<

In[10]:= Quit@D
The solution  is almost the same that the obtained using Method 1 and 2 and the computation time is similar. 
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Method 4

In this case we will obtain again 9 ¶x1Ht,k12L
¶k12

,
¶x2Ht,k12L

¶k12

,
¶x3Ht,k12L

¶k12

= but in this case we will use  eq(8) with  x0=0

xH pL HtL = ExpIA tL * AH pL ExpHA tL * bHtL
In[1]:= A = 88-2.026827329246876 - k12, 0, 0.0462<, 8k12, -0.08642732924687598 - k23, 0<,

80, k23, -0.14417732924687598<<;
In[2]:= B = 9-27.13 ã-24.08 t + 27.13 ã-2.86 t - 0.020 ã-0.147 t + 0.0194 ã-0.093 t

, 0, 0=;
In[3]:= func@t1_?NumberQ, a_?NumberQ, b_?NumberQ, k_D := Module@8m1, AExp<,

m1 = MatrixExp@A tD �. 8k12 ® a, k23 ® b< �� ExpandAll �� Chop;

AExp = Map@Integrate@ð1, 8tau, 0, t<D &,

Evaluate@m1 �. t -> t - tauD.Evaluate@D@A, k D.Evaluate@m1 �. t -> tauDD,
81<D;

Map@Integrate@ð1, 8tau, 0, t<D &,

Evaluate@AExp �. t -> t - tauD.Evaluate@B �. t -> tauD, 81<D �. t ® t1D
The solution of fa is wrong (see the solution obtained with Method 1 and 2) and the time of computation is too long.  We discart this method

In[4]:= 8func@30, 0.80, 0.0078, k12D, func@30, 0.80, 0.0078, k23D< �� AbsoluteTiming

Out[4]= 886.933725,

88-0.00159739, -0.415486, 0.0167<, 80.0350599, -3.978464351720, 2.082955628269<<<

Note that this function is equivalente to the previous function: X1[a_,b_,ti_]:={fa[a,b,ti][[1]], fb[a,b,ti][[1]]}

Conclusion:  Method 1 and 3 are very fast and they are  also  the easiest for programming. We will compare both methods in a OED 

In[5]:= Quit@D
 Optimal experiment design

We will suppose that k12  and k23  are unknown, although we know that their values will be about  k12 = 0.8 and k23 = 0.0078. We wish

estimate them taken experiment  data from compartment 1 . The problem consist on decide by DOE the best moment to taken the sample.

We will use   D-optimal design.

Method 1

Here we will the optimal design experiment computing the derivatives using the method 1 that we have yet described

We wish  find  t :{t0,..,   ti,  ...   tn} of the model given by eq. (4). (or (5))  using D-optimal design when the analitycal expression of

x1Ht, a, bL can not be found. [f(t, Β) =x1Ht, k12, k23L]
1.- It is defined a model  f Ht, ΒL where the unknown parameters are Β = 8a, b<. In our case we call  Β = 8k12, k23<. [We write eq4a and

eq5a obtained when the method 1 has beed described ]

In[1]:= eq4a = ParametricNDSolveA
9x1¢@tD � -27.13 ã-24.08 t + 27.13 ã-2.86 t - 0.02 ã-0.147 t + 0.0194 ã-0.093 t +

H-2.026827 - k12L x1@tD + 0.0462 x3@tD,
x2

¢@tD � k12 x1@tD + H-0.086427 - k23L x2@tD, x3
¢@tD � k23 x2@tD - 0.1441773 x3@tD,

x1a
¢@tD � -x1@tD + H-2.0268 - k12L x1a@tD + 0.0462` x3a@tD,

x2a
¢@tD � x1@tD + k12 x1a@tD + H-0.086427 - k23L x2a@tD,

x3a
¢@tD � k23 x2a@tD - 0.144177` x3a@tD, x1@0D � 0, x2@0D � 0, x3@0D � 0,

x1a@0D � 0, x2a@0D � 0, x3a@0D � 0=, 8x1, x2, x3, x1a, x2a, x3a<,
8t, 0, 100<, 8k12, k23<E;
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In[2]:= eq5a = ParametricNDSolveA
9x1¢@tD � -27.13 ã-24.08` t + 27.13 ã-2.86 t - 0.02 ã-0.147 t + 0.0194 ã-0.093 t +

H-2.0268 - k12L x1@tD + 0.0462 x3@tD, x2
¢@tD � k12 x1@tD + H-0.0864 - k23L x2@tD,

x3
¢@tD � k23 x2@tD - 0.1442 x3@tD, x1b

¢@tD � H-2.0268 - k12L x1b@tD + 0.0462` x3b@tD,
x2b

¢@tD � k12 x1b@tD - x2@tD + H-0.0864 - k23L x2b@tD,
x3b

¢@tD � x2@tD + k23 x2b@tD - 0.14418 x3b@tD, x1@0D � 0, x2@0D � 0,

x3@0D � 0, x1b@0D � 0, x2b@0D � 0, x3b@0D � 0=, 8x1, x2, x3, x1b, x2b, x3b<,
8t, 0, 100<, 8k12, k23<E;

2.-Now it is computed  Ñ H f HtL, 8a, b<L = {
df HtL
da

,
df HtL
db

},

In[3]:= fa@a_?NumberQ, b_?NumberQ, t_?NumberQD := x1a@a, bD@tD �. eq4a

In[4]:= fb@a_?NumberQ, b_?NumberQ, t_?NumberQD := x1b@a, bD@tD �. eq5a

3.- We need to  define the number of points n to be used in the optimal design. 

4.- It is evaluated Ñ(f(t), Β) at points t:{t0,..., tn}, obtaining X = 9X1, ..., Xp= with X1  = {
df Ht0L
dΒ

1

, ...,
df HtnL
dΒ

1

}, ..., Xp  = {
df Ht0L
dΒ

p

, ...,
df HtnL
dΒ

p

}  .

Because the sample will be taken in compartment 1 , we extract of fa and fb the derivatives corresponding to x1HtL 
In[5]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD, fb@a, b, tiD<

5.- A typical election for compute the covariance matrix is assumed that  that the relationship between samples decays exponentially with

increasing time-distance between them, that is  G = {lij} with lij= exp {Ρ|t j -t j|}.For computational purpose we have found more appropri-

ate to use the distance di  = ti - ti-1, instead of  ti, then ti= Úi di  being d0 = t0 . That is for a two points design . We suppose a 3-points

design. The first is defined by the user 

 G where 

In[6]:= G = 991, ã-Ρ d1
, ã-Ρ Hd1+d2L=, 9ã-Ρ d1

, 1, ã-Ρ d2=, 9ã-Ρ Hd1+d2L
, ã-Ρ d2

, 1==;
6.-  Now it is computed the covariance matrix S = Σ2  G

In[7]:= S = Σ2 * G;

We assume 

In[8]:= Ρ = 1; Σ = 1;

We will also  need give the initial values of  Β  the standard deviation of the measures. We also assumed k12= 0.80, k23=0.0078

7.- Then we can obtain the information matrix

M =  X T S-1
X

 m := X . Inverse[S].  Transpose[X];

In[9]:= m1@ti_D := Transpose@Map@X1@0.80, 0.0078, ðD &, tiD D. Inverse@SD.
Map@X1@0.80, 0.0078, ðD &, tiD

8.- Finally  the determinant of the information matrix is maximized as function of d0, d1 and d2. We constrain the d values to a maximun of

t=50 becouse to longer time the concentration will be very low (lower than the detection limit)

In[10]:= obj@d0_?NumericQ, d1_?NumericQ, d2_?NumericQD := Det@m1@8d0, d1 + d0, d0 + d1 + d2<DD
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In[11]:= sol1 = NMaximize@ 8obj@d0, d1, d2D, 0 < d0 < 50, 0.02 < d1 < 50, 0.02 < d2 < 50<,
8d0, d1, d2<D �� Timing

InterpolatingFunction::dmval :

Input value 8110.013< lies outside the range of data in the interpolating function. Extrapolation will be used. �

InterpolatingFunction::dmval :

Input value 8110.013< lies outside the range of data in the interpolating function. Extrapolation will be used. �

InterpolatingFunction::dmval :

Input value 8110.013< lies outside the range of data in the interpolating function. Extrapolation will be used. �

General::stop : Further output of InterpolatingFunction::dmval will be suppressed during this calculation. �

Out[11]= 81.812500, 80.0160671, 8d0 ® 0.748667, d1 ® 7.23841, d2 ® 3.66134<<<

In[12]:= Quit@D
Method 3

Here we will the optimal design experiment computing the derivatives using the method 3 that we have yet described. 

1.- It is defined a model  f Ht, ΒL where the unknown parameters are Β = 8a, b<. In our case we call  Β = 8k12, k23<. [We write the ODE of

the system obtained when we described the method 3 

In[1]:= sol = ParametricNDSolveA
9x1¢@tD � -27.13` ã-24.08` t + 27.13` ã-2.86` t - 0.02` ã-0.147` t + 0.0194` ã-0.093` t +

H-2.026827` - k12L x1@tD + 0.0462` x3@tD,
x2

¢@tD � k12 x1@tD + H-0.08643` - k23L x2@tD, x3
¢@tD � k23 x2@tD - 0.1442` x3@tD,

x1@0D � 0, x2@0D � 0, x3@0D � 0=, 8x1, x2, x3<, 8t, 0, 100<, 8k12, k23<E;
2.-Now it is computed  Ñ H f HtL, 8a, b<L = {

df HtL
da

,
df HtL
db

},

In[2]:= fa@a1_?NumberQ, b_?NumberQ, t_?NumberQD := D@x1@a, bD, aD@tD �. a ® a1 �. sol

In[3]:= fb@a_?NumberQ, b1_?NumberQ, t_?NumberQD := D@x1@a, bD, bD@tD �. b ® b1 �. sol

3.- We need to  define the number of points n to be used in the optimal design. 

4.- It is evaluated Ñ(f(t), Β) at points t:{t0,..., tn}, obtaining X = 9X1, ..., Xp= with X1  = {
df Ht0L
dΒ

1

, ...,
df HtnL
dΒ

1

}, ..., Xp  = {
df Ht0L
dΒ

p

, ...,
df HtnL
dΒ

p

}  .

Because the sample will be taken in compartment 1 , we extract of fa and fb the derivatives corresponding to x1HtL 
In[4]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD, fb@a, b, tiD<

5.- A typical election for compute the covariance matrix is assumed that  that the relationship between samples decays exponentially with

increasing time-distance between them, that is  G = {lij} with lij= exp {Ρ|t j -t j|}.For computational purpose we have found more appropri-

ate to use the distance di  = ti - ti-1, instead of  ti, then ti= Úi di  being d0 = t0 . That is for a two points design . We suppose a 3-points

design. The first is defined by the user 

 G where 

In[5]:= G = 991, ã-Ρ d1
, ã-Ρ Hd1+d2L=, 9ã-Ρ d1

, 1, ã-Ρ d2=, 9ã-Ρ Hd1+d2L
, ã-Ρ d2

, 1==;
6.-  Now it is computed the covariance matrix S = Σ2  G

In[6]:= S = Σ2 * G;

We assume 

In[7]:= Ρ = 1; Σ = 1;

We will also  need give the initial values of  Β  the standard deviation of the measures. We also assumed k12= 0.80, k23=0.0078

7.- Then we can obtain the information matrix
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M =  X T S-1
X

 m := X . Inverse[S].  Transpose[X];

In[8]:= m1@ti_D := Transpose@Map@X1@0.80, 0.0078, ðD &, tiD D. Inverse@SD.
Map@X1@0.80, 0.0078, ðD &, tiD

8.- Finally  the determinant of the information matrix is maximized as function of d0, d1 and d2. We constrain the d values to a maximun of

t=50 becouse to longer time the concentration will be very low (lower than the detection limit)

In[9]:= obj@d0_?NumericQ, d1_?NumericQ, d2_?NumericQD := Det@m1@8d0, d1 + d0, d0 + d1 + d2<DD
In[10]:= sol1 = NMaximize@ 8obj@d0, d1, d2D, 0 < d0 < 50, 0.02 < d1 < 50, 0.02 < d2 < 50<,

8d0, d1, d2<D �� Timing

InterpolatingFunction::dmval :

Input value 8110.013< lies outside the range of data in the interpolating function. Extrapolation will be used. �

InterpolatingFunction::dmval :

Input value 8110.013< lies outside the range of data in the interpolating function. Extrapolation will be used. �

InterpolatingFunction::dmval :

Input value 8110.013< lies outside the range of data in the interpolating function. Extrapolation will be used. �

General::stop : Further output of InterpolatingFunction::dmval will be suppressed during this calculation. �

Out[10]= 82.031250, 80.0160593, 8d0 ® 0.748664, d1 ® 7.23683, d2 ® 3.661<<<

Conclusion:  The time of computation of Method 1 and 3 are practically the same, method 1 a bit faster tham method 3,, but Method

3 is the easiast for programming 

Here it is shown graphically the iteration process of d1 and de

In[11]:= d0 = 0.748664;

In[12]:= FindMaximum@8obj@d0, d1, d2D, 0.02 < d1 < 10, 0.02 < d2 < 10<, 88d1, 5<, 8d2, 6<<,
StepMonitor ¦ Print@8"d1:", d1, "d2:", d2<DD

8d1:, 5., d2:, 6.<

8d1:, 5.71153, d2:, 5.36494<

8d1:, 6.55693, d2:, 4.00819<

8d1:, 7.00631, d2:, 3.78098<

8d1:, 7.1993, d2:, 3.67541<

Out[12]= 80.0160593, 8d1 ® 7.23569, d2 ® 3.66131<<

In[13]:= pts =

Reap@FindMaximum@ 8obj@d0, d1, d2D, 0.02 < d1 < 10, 0.02 < d2 < 10<,
88d1, 5<, 8d2, 6<<, StepMonitor ¦ Sow@8d1, d2<DDD@@2, 1DD;
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In[14]:= ContourPlot@obj@d0, d1, d2D �� Minus, 8d1, 0.02, 10<, 8d2, 0.02, 10<,
Epilog ® 8Red, Line@ptsD, Point@ptsD<D

Out[14]=

0 2 4 6 8 10

0

2

4

6

8

10

In[15]:= Quit@D

Biokinetic model of Ciprofloxacin and Ofloxacin 

The model

The  following  differential  equations  result  from  the  model   ofA.  Sánchez-Navarro,  C.  Casquero,  and  M.  Weiss,  'Distribution  of

Ciprofloxacin and Ofloxacin in the Isolated Hindlimb of the Rat', Pharmaceutical Research, 16: 587-591 (1999): 

cout '@tD +

Q

Vp

+

PS

Vp

cout@tD -

PS

Vp

cTu@tD =

Q

Vp

cin@tD

cTu ' @tD +

PS

VTu

+ kon cTu@tD -

PS

VTu

cout@tD - koff

VTb

VTu

CTb@tD = 0

cTb ' @tD + koff cTb@tD - kon

VTu

VTb

cTu@tD = 0

Initial conditions: cout@0D = 0, cTu@0D = 0, cTb@0D = 0

ci(t) , with i = {out, Tu, Tb}, represents the concentration of a sustance in differentes part of the models. We consider the case where with Q

=  3 mL min
-1

, VTu = 6.411, Vp, 0.973, VTb = 1,  and P S = 2.714, then replacing VTu, Vp,  VTb, P S, Q for their values where for conve-

nients we call  x1HtL, x2HtL and x3HtL intead of cout HtL, cTu HtLand cTb HtL

(9)

x1
¢HtL � -5.87256 x1HtL + 2.7893 x2HtL + 3.08325 cintHtL

x2
¢HtL � 0.423335 x1HtL + H-kon - 0.423335L x2HtL + 0.15598 koff x3HtL

x3
¢HtL � 6.411 kon x2HtL - koff x3HtL

x1H0L = x2H0L � x3H0L � 0

We use  cin(t) = 13 610.1 t ã-11.216 t  (According to G. Sanchez Biokmod: A Mathematica toolbox for modeling Biokinetic Systems”.

Mathematica in Education and Research: 10 (2) 2005. ISSN/ISBN: 1096-3324  using the experimental data obtained by of A. Sánchez-

Navarro et al. )

Then, on notation matrix:

(10)x HtL = x0 ExpHA tL + ExpHA tL * bHtL
where 
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xHtL = 8x1HtL, x2HtL, x3HtL<T  

 Optimal experiment design

This model (eq9) is represented in Mathematica  by the ODE

In[1]:= eqox = 8 x1'@tD == -5.87256 x1@tD + 2.78931 x2@tD + 41963.3 t Exp@-11.216 tD,
x2'@tD == 0.423335 x1@tD + H-kon - 0.423335L x2@tD + 0.155982 koff x3@tD,

x3'@tD == 6.411 kon x2@tD - koff x3@tD,
x1@0D == 0, x2@0D == 0, x3@0D == 0<;

We want to estimate the values of kon and koff  making an experiment that consist on in measure the concentration of a compount at x
`

1HtL  for

t :{t0,..,  ti, ...  tn} an then estimate kon and koff  by fitting  x1Ht, kon, koff L . 
The problem is can not be found an analitycal expresion of x1Ht, kon, koff L because the ODE system eq. (4). (or (5)) can not be solved if

kon, koff are parameters. However x1Ht, kon, koff L has solution when kon, koff take numeric values, this fact is used by some nonlinear

regresion method  to estimated kon, koff.

We wish  find  t  :{t0,..,   ti,  ...   tn} of the model given by eq. (4).  (or (5))  using D-optimal design when the analitycal expresion of

x1Ht, kon, koff L can not be found. [f(t, Β) =x1Ht, kon, koff L]
1.- It is defined a model  f Ht, ΒL where the unkown parameters are Β = 8kon, koff <.

In[2]:= sol = ParametricNDSolve@eqox , 8x1, x2, x3<, 8t, 0, 100< , 8kon, koff<D
Out[2]= 8x1 ® ParametricFunction@<>D,

x2 ® ParametricFunction@<>D, x3 ® ParametricFunction@<>D<

2.-Now it is computed  Ñ H f HtL, 8a, b<L = {
df HtL
da

,
df HtL
db

},

In[3]:= fa@a1_?NumberQ, b_?NumberQ, t_?NumberQD := D@x1@a, bD, aD@tD �. a ® a1 �. sol

In[4]:= fb@a_?NumberQ, b1_?NumberQ, t_?NumberQD := D@x2@a, bD, bD@tD �. b ® b1 �. sol

3.- Here is defined the number of points n to be used in the optimal design. 

4.- It is evaluated Ñ(f(t), Β) at points t:{t0,..., tn}, obtaining X = 9X1, ..., Xp= with X1 = {
df Ht0L
dΒ

1

, ...,
df HtnL
dΒ

1

}, ..., Xp = {
df Ht0L
dΒ

p

, ...,
df HtnL
dΒ

p

}  

In[5]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD, fb@a, b, tiD<
In[6]:= X1@0.7, 0.11, 0.5D �� AbsoluteTiming

Out[6]= 80.093774, 8-0.837181, 0.361595<<

Test OK( The same value that using Method 1)

6.- A typical election for compute the covariance matrix is assumed that  that the relationship between samples decays exponentially with

increasing time-distance between them, that is  G = {lij} with lij= exp {Ρ|t j -t j|}.For computational purpose we have found more appropri-

ate to use the distance di  = ti - ti-1, instead of  ti, then ti= Úi di  being d0 = t0 . That is for a two points design . We suppose a 3-points

design. The first is defined by the user 

 G where 

FoldList@Plus, Subscript@d, 0D, Table@di, 8i, n<DD;
ff@i_, j_D := WhichBi � j, 1, i < j, ã-Ρ Úk=i

j-1
dk, i > j, ã

-Ρ Úk=j
i-1dkF;

nn = 2;

G = Array@ff, 8nn + 1, nn + 1<D
6.-  Now it is computed the convariance matrix S = Σ2  G

We take:

In[7]:= Ρ = 1; Σ = 1;

We will also  need give the initial values for the Β parameters and the standard deviation of the measures. kon= 0.7, koff=0.11

7.- Then we can obtain the information matrix
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M =  X T S-1
X

 m := X . Inverse[S].  Transpose[X];

In[8]:= m1@ti_D := Transpose@Map@X1@0.7, 0.11, ðD &, tiD D. Inverse@SD.
Map@X1@0.7, 0.11, ðD &, tiD

8.- Finally  the determinant of the information matrix is maximized as function of d0, d1 and d2. We constrain the d values to a maximun of

di=10 becouse to longer time the concentration will be very low (lower than the detection limit)

For n (number of observations)= 2

In[9]:= G = 991, ã-Ρ d1=, 9ã-Ρ d1
, 1==;

In[10]:= S = Σ2 * G;

In[11]:= m1@ti_D := Transpose@Map@X1@0.7, 0.11, ðD &, tiD D. Inverse@SD.
Map@X1@0.7, 0.11, ðD &, tiD

In[12]:= obj@d0_?NumericQ, d1_?NumericQD := Det@m1@8d0, d1 + d0<DD
In[13]:= sol2 = NMaximize@ 8obj@d0, d1D, 0.02 < d0 < 10, 0.02 < d1 < 10<, 8d0, d1<D

Out[13]= 82426.54, 8d0 ® 1.57416, d1 ® 4.4425<<

For n (number of observations)= 3

In[14]:= G = 991, ã-Ρ d1
, ã-Ρ Hd1+d2L=, 9ã-Ρ d1

, 1, ã-Ρ d2=, 9ã-Ρ Hd1+d2L
, ã-Ρ d2

, 1==;
In[15]:= S = Σ2 * G;

In[16]:= obj@d0_?NumericQ, d1_?NumericQ, d2_?NumericQD := Det@m1@8d0, d1 + d0, d0 + d1 + d2<DD
In[17]:= sol3 = NMaximize@ 8obj@d0, d1, d2D, 0.02 < d0 < 10, 0.02 < d1 < 10, 0.02 < d2 < 10<,

8d0, d1, d2<D
Out[17]= 84322.28, 8d0 ® 1.56996, d1 ® 3.58403, d2 ® 3.15854<<

For n (number of observations)= 4

In[18]:= G = 991, ã-Ρ d1
, ã-Ρ Hd1+d2L

, ã-Ρ Hd1+d2+d3L=,
9ã-Ρ d1

, 1, ã-Ρ d2
, ã-Ρ Hd2+d3L=,

9ã-Ρ Hd1+d2L
, ã-Ρ d2

, 1, ã-Ρ d3=,
9ã-Ρ Hd1+d2+d3L

, ã-Ρ Hd2+d3L
, ã-Ρ d3

, 1==;
S = Σ2 * G;

In[19]:= m1@ti_D := Transpose@Map@X1@0.7, 0.11, ðD &, tiD D. Inverse@SD.
Map@X1@0.7, 0.11, ðD &, tiD

In[20]:= obj@d0_?NumericQ, d1_?NumericQ, d2_?NumericQ, d3_?NumericQD :=

Det@m1@8d0, d1 + d0, d0 + d1 + d2, d0 + d1 + d2 + d3<DD
In[21]:= sol4 = NMaximize@ 8obj@d0, d1, d2, d3D, 0.02 < d0 < 10, 0.02 < d1 < 10,

0.02 < d2 < 10, 0.02 < d3 < 10<, 8d0, d1, d2, d3<D
Out[21]= 85871.95, 8d0 ® 1.55933, d1 ® 2.90892, d2 ® 2.59358, d3 ® 3.07663<<

Conclusion: The observations will be taken: n, t0, t1,t2,t3}
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In[22]:= 88"Observations 2:", d0, d1 + d0< �. sol2@@2DD,
8"Observations 3:", d0, d1 + d0, d0 + d1 + d2< �. sol3@@2DD,
8"Observations 4:", d0, d1 + d0, d0 + d1 + d2, d0 + d1 + d2 + d3< �. sol4@@2DD<

Out[22]= 88Observations 2:, 1.57416, 6.01666<, 8Observations 3:, 1.56996, 5.15399, 8.31253<,

8Observations 4:, 1.55933, 4.46826, 7.06183, 10.1385<<

In[23]:= Quit@D

Michaelis-Menten 

The model

In this case the drug transference between compartments will be considered as a linear kinetic process described by the transfer coefficients

k12 and k21. However, the elimination process will be non-linear as it happens for instance in hepatic metabolism, and the elimination rate

of the drug can mathematically be expressed by the Michaelis-Menten equation with parameters Vm=maximum transformation speed and

km=Michaelis-Menten constant. The drug administration will be assumed to be an impulsive input (bolus).

1.- It is defined a model  f Ht, ΒL where the unkown parameters are Β = 8a, b<.
Vmax = 0.2; km = 0.3

In[1]:= Vmax = 0.2; km = 0.3; V1 = 1;

In[2]:= eq1 = x1'@tD � -k12 x1@tD + k21 x2@tD -
Vmax x1@tD � V1

km + x1@tD � V1

;

In[3]:= eq2 = x2'@tD == k12 x1@tD - k21 x2@tD;
It can be solved as function of k12 and k21:

In[4]:= sol = ParametricNDSolve@8eq1, eq2, x1@0D == 1, x2@0D == 0<, 8x1, x2<,
8t, 0, 100<, 8k12, k21<D

Out[4]= 8x1 ® ParametricFunction@<>D, x2 ® ParametricFunction@<>D<

We wish  find  t :{t0,..,  ti, ...  tn} )  using D-optimal design when the analitycal expresion of x1Ht, ka, kbL can not be found. [f(t, Β)

=x1Ht, ka, kbL]
2.-Now it is computed  Ñ H f HtL, 8a, b<L = {

df HtL
da

,
df HtL
db

},

In[5]:= fa@a1_?NumberQ, b_?NumberQ, t_?NumberQD := D@x1@a, bD, aD@tD �. a ® a1 �. sol

In[6]:= fb@a_?NumberQ, b1_?NumberQ, t_?NumberQD := D@x1@a, bD, bD@tD �. b ® b1 �. sol

3.-It is defined the number of points n to be used in the optimal design. 
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4.- It is evaluated Ñ(f(t), Β) at points t:{t0,..., tn}, obtaining X = 9X1, ..., Xp= with X1 = {
df Ht0L
dΒ

1

, ...,
df HtnL
dΒ

1

}, ..., Xp = {
df Ht0L
dΒ

p

, ...,
df HtnL
dΒ

p

}  

In[7]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD, fb@a, b, tiD<
We test using typical values of ki: k12 = 0.03, k21 = 0.02 for t:{1,3,10}

In[8]:= Map@X1@0.03, 0.02, ðD &, 81, 3, 10<D �� AbsoluteTiming

Out[8]= 80.062493, 88-0.867671, 0.0135637<, 8-1.84457, 0.0962505<, 8-0.248479, 0.167842<<<

6.- A typical election for compute the covariance matrix is assumed that  that the relationship between samples decays exponentially with

increasing time-distance between them, that is  G = {lij} with lij= exp {Ρ|t j -t j|}.For computational purpose we have found more appropri-

ate to use the distance di  = ti - ti-1, instead of  ti, then ti= Úi di  being d0 = t0 . That is for a two points design . We suppose a 3-points

design. The first is defined by the user 

 G where 

In[9]:= G = 991, ã-Ρ d1
, ã-Ρ Hd1+d2L=, 9ã-Ρ d1

, 1, ã-Ρ d2=, 9ã-Ρ Hd1+d2L
, ã-Ρ d2

, 1==;;
6.-  Now it is computed the convariance matrix S = Σ2  G

In[10]:= S = Σ2 * G;

We take:

In[11]:= Ρ = 1; Σ = 1;

In[12]:= S

Out[12]= 991, ã
-d1

, ã
-d1-d2=, 9ã

-d1
, 1, ã

-d2=, 9ã
-d1-d2

, ã
-d2

, 1==

We will also  need give the initial values for the Β parameters and the standard deviation of the measures. ka= 0.03, kb=0.02

7.- Then we can obtain the information matrix

M =  X T S-1
X

 m := X . Inverse[S].  Transpose[X];

In[13]:= m1@ti_D := Transpose@Map@X1@0.03, 0.02, ðD &, tiD D. Inverse@SD.
Map@X1@0.03, 0.02, ðD &, tiD

In[14]:= obj@d0_?NumericQ, d1_?NumericQ, d2_?NumericQD := Det@m1@8d0, d1 + d0, d0 + d1 + d2<DD
In[15]:= sol1 = NMaximize@ 8obj@d0, d1, d2D, 0 < d0 < 10, 0 < d1 < 10, 0 < d2 < 10<, 8d0, d1, d2<D ��

Timing

Out[15]= 83.421875, 80.189599, 8d0 ® 3.02083, d1 ® 3.36409, d2 ® 3.029<<<

In[16]:= 8d0, d1 + d0, d0 + d1 + d2< �. sol1@@2, 2DD
Out[16]= 83.02083, 6.38492, 9.41392<

2.-Now it is computed  Ñ H f HtL, 8a, b<L = {
df HtL
da

,
df HtL
db

},

In[17]:= fa@a1_?NumberQ, b_?NumberQ, t_?NumberQD := D@x1@a, bD, aD@tD �. a ® a1 �. sol

In[18]:= fb@a_?NumberQ, b1_?NumberQ, t_?NumberQD := D@x1@a, bD, bD@tD �. b ® b1 �. sol

3.- Here is defined the number of points n to be used in the optimal design. 

4.- It is evaluated Ñ(f(t), Β) at points t:{t0,..., tn}, obtaining X = 9X1, ..., Xp= with X1 = {
df Ht0L
dΒ

1

, ...,
df HtnL
dΒ

1

}, ..., Xp = {
df Ht0L
dΒ

p

, ...,
df HtnL
dΒ

p

}  

In[19]:= X1@a_, b_, ti_D := 8 fa@a, b, tiD, fb@a, b, tiD<
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We test using typical values of ki: ka = 0.03, kb = 0.02

In[20]:= Map@X1@0.03, 0.02, ðD &, 81, 3, 10<D �� AbsoluteTiming

Out[20]= 80., 88-0.867671, 0.0135637<, 8-1.84457, 0.0962505<, 8-0.248479, 0.167842<<<

6.- A typical election for compute the covariance matrix is assumed that  that the relationship between samples decays exponentially with

increasing time-distance between them, that is  G = {lij} with lij= exp {Ρ|t j -t j|}.For computational purpose we have found more appropri-

ate to use the distance di  = ti - ti-1, instead of  ti, then ti= Úi di  being d0 = t0 . That is for a two points design . We suppose a 3-points

design. The first is defined by the user 

 G where 

In[21]:= G = 991, ã-Ρ d1
, ã-Ρ Hd1+d2L=, 9ã-Ρ d1

, 1, ã-Ρ d2=, 9ã-Ρ Hd1+d2L
, ã-Ρ d2

, 1==;;
6.-  Now it is computed the convariance matrix S = Σ2  G

In[22]:= S = Σ2 * G;

We take:

In[23]:= Ρ = 1; Σ = 1;

In[24]:= S

Out[24]= 991, ã
-d1

, ã
-d1-d2=, 9ã

-d1
, 1, ã

-d2=, 9ã
-d1-d2

, ã
-d2

, 1==

We will also  need give the initial values for the Β parameters and the standard deviation of the measures. ka= 0.03, kb=0.02

7.- Then we can obtain the information matrix

M =  X T S-1
X

 m := X . Inverse[S].  Transpose[X];

In[25]:= m1@ti_D := Transpose@Map@X1@0.03, 0.02, ðD &, tiD D. Inverse@SD.
Map@X1@0.03, 0.02, ðD &, tiD

In[26]:= sol1 = NMaximize@ 8obj@d0, d1, d2D, 0 < d0 < 10, 0 < d1 < 10, 0 < d2 < 10<, 8d0, d1, d2<D
Out[26]= 80.189599, 8d0 ® 3.02083, d1 ® 3.36409, d2 ® 3.029<<

The observation should be taken (i): 

In[27]:= 8d0, d1 + d0, d0 + d1 + d2< �. sol1@@2DD
Out[27]= 83.02083, 6.38492, 9.41392<
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