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Many processes are given by a system of ordinary differential equations, very often without an
analytical solution. When there are unknown parameters, that need to be estimated, optimum
experimental design approach offers quality estimators for the different objectives of the
practitioners. But almost every optimality criteria needs to deal with the linearized mode for
computing optimal designs, and this can be a great problem when it is not possible to obtain the
analytical form of the model. In this work, a procedure for findingoptimal designs for models given
as solutions to a system of ordinary differential equations is described. Some important models like
the compartmental one, are studied through actual case studies, obtaining the corresponding optimal
designs.
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Overview of compartmental and biokinectic equivalents models

Compartmental analysis has applications in clinical medicine, pharmacokinetics, internal dosimetry, nuclear medicine, ecosystem studies
and chemical reaction kinetics. It can be described as the analysis of a system in terms of compartments which separate the system into a
finite number of component parts which are called compartments. Compartments interact through the exchange of species. Species may be a
chemical substance, hormone, individualsin a population and so on. A compartmental system is usually represented by a flow diagram or a
block diagram. A general introduction to this theory can be found in Anderson (1983), Godfrey (1983) and Jazquez (1985).
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We adopt the convention of representing compartments with circles or rectangles. The flow into or out of the compartments is represented
by arrows. Thei™™ compartment of a system of n compartments is labelled i and the size (amount or content) of the component in compart-
ment i as x; (). The exchange between compartments, or between a compartment and the environment is labeled k;;, where i represents the

flow fromi to j. The environment is usually represented by "0" (zero), so kiq is the fractional excretion coefficient from the i-th compart-
ment to the outside environment. The input from the environment into the j-th compartment is called bj(t). Environment represents the

processes that are outside the system. With regards to the environment, we only need to know the flow, bj(t), into the system from the
outside. The k; are called fractional transfer rate coefficients and they may be a function of different variables or constants.

Figure 1. The general tricompartmental system.

Figure 1 represents the general tricompartmental model with one input and output in each compartment. If we suppose that the substance
introduced into the system is a radioactive isotope we mush considered the radioactive decay, it is given by a constant rate represented by A
(decay constant), it is specific for each isotope (obviously A = 0 if no radioactive substances are presents or they are long life isotopes) . The
decay constant can be interpreted by an equal flow going out of the system in each compartment. The model can be represented by the
follow ODE System

X' (1) =by(t) — (kio + kiz + kiz + ) xa() + ko1 Xa(t) + ka1 X3(t)

X2' (1) = ba(t) + ki X1(t) — (koo + ko1 + Koz + Q) Xo(t) + ka2 Xa(t)

X3' (1) =bg () + kizXa(t) + kazXo(t) — (Kso + ka1 + ka2 +A) X3(t)

in matrix notation

X1 () ai1 a2 ais X1 () by ()
Xo' (t) | = | a1 azx ass X2 (U) | + | b (1)
X2' (1) as1 asy ass X2 (1) bs (1)
with
aj; = - (ko + ka2 + Kz + A) 5 a2 = Kap; @iz = Kag;
a1 = K1z, @z = - (Kao + K1 + Kaz + ) ;@23 = Kaz;
asy = K13, @s2 = Kza; aszz = - (kzo + ka1 + Ksz2 + Q);

In some circumstances, instead of compartments we have parts o process than can be represented by transference between Different parts,
for example, when blood flow or other physiological parameter is measured. In those circumstances the transfer rate constants k;; are
associated with physiologically meaningful values that correspond to the measured physiological parameter or may be a function of them.
However, if the physiological parameters are constants models are mathematically equivalent with compartmental models. We will refer in
genera to kinetic models.

The patterns that we have seen can be expanded to systems of n compartments or n state variables (in the case of physiological models). The
equation for any compartment i in notation matrix is given by

Xt =AX(@®) + b)), t=0
X(0) = Xo (1)
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where:

X(t) = {Xa(t), Xao(t), ..., Xa(£)}T isacolumn vector and x;(t) denote the amount or content of species in compartment i at timet.
A isanxn is usualy known as the system matrix given by coefficientsa;= g(k;) where k; are constant specifics of each model (in
compartmental models they are obtained in the form that has been descried)

b(t) = {by(t), ba(t), ..., ba(t)}T isacolumn vector where {b;(t)} istheinput rateinto compartment i from outside system.

x(0) = {x1(0), %2(0), ..., x,(0)} Taretheinitial conditions, so x;(0), represents the amount or content of species in compartment i at time
t=0.

The solution of eq(1) when the coeffs g; are constantsis eq(2)
X (t) =Xo EXp(At) + Exp(At) = b(t) )

where* denotes convolution,

Exp(A t) * b(t) = f Expl(t — 1) Alb(r) dt
0

Sometime Laplace transforms are used to solve eq (1).
X() =(sl = A 1x+ (sl —A) 1B 3

where X(s) and B(s) are the Laplace transforms of x(t) and b(t). Then evaluating the inverse Laplace transformation is obtained:
X(t) = L‘l((sl -A1 xo) + L‘l((sl -At B(s)) (4)

Both methods are used for BIOKMOD software for solving eq.(1) developped for ones of the authors.

In many circumstance some parameters of biokinetic models represented by eq. (1) (one o more k; coefficients), that we will
cadl g = {ﬂl, e Bp } , are unknown an they are estimated by fitting experimental data. It means that we measure y;(t), being y;(t) = x(t,
B)+e, for different moments of t: §(to) , ..., (tn). Thenwe estimated B = {Bs, ..., B} by fitting yi(t) and §(t).

We propose chose the best moments {to,.., tj, ... tn} totake the experimental data. It it can be done using techniques of Optimal Design of
Experiment (ODE), in particular we chose apply a D-optimal design.

In aD-optimal design thevalues of {t1,.., ti, ... ty} (i isthe time when the i-th sample should be taken) are given in the points that |eads
the determinant of the Fisher information matrix (M) to a maximum. The process to obtain M will be described later (it can be found in
Hill, P. D. H., 1980, D-optimal designs for partially nonlinear regression models. Technometrics 22:275-276).

Derivatives

The standard method to obtain the maximum of Det|M| requires to know the analytical expression of x(t, 8). In this paper we propose a
method to compute the D-optimal design in biokinetic system descried by ODE with the pattern of eqg (2) when analytical expression of x(t,
) cannot be obtained.

In the D-optimal design method the derivatives with respect to 8 must be evaluated
We used a subscript in parentheses to denote differentiation with respect to a parameter, so dx/9 8 = X(p)-
When in eq(1) A depends of 8, but not b(t) and xo we can get the derivatives of x(t, 8) by differentiation of eq.(1)
Xp® = A X +Ap () ®)
Then, using eq(2)
Xp (1) =Exp(At) X(p)(0) + EXp(A 1) = [Ap x| =
EXp(A D) X()(0) + Exp(A 1) [Ap) EXP(A ) Xo| + EXp(A 1) # A EXP(A L) = b(t)

Xp () = Exp(A 1) x(p)(O) + A(p) Xo EXp (A ) = EXp(At) + A(p) EXp(A t) «Exp(A t) = b(t) (6)

Asx(0)= Xy = x(p)(O):O therefore:

X (O =A(p) Xo EXp (A t) =« EXp(At) + A EXp(A t) «EXp(A 1) = b(t) @)
In the the particular case that the input happenint = 0, that is x(0) = Xo with b(t)=0for t > 0. Then

Xp (D =Ap) Xo EXp (A1) = EXp(At) (8)
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Exp(At) « EXp(At) = fEXp[(t -7T)AlEXp(AT)dT
0

Theiodine model

The model

Let's consider the iodine biokinetic model represented in the figure 2 (ICRP 78) where compartment 1 is the blood, compartment 2 is the
thyroid, compartment 3 is the rest of the body, compartment 4 is the bladder, 3 - 0, i.e. atransfer from compartment 3 to the environment,
represents the output to the gastro intestinal tract (GIT) and 4 - O represents the output, via urine excretion, to the environment. In the
follow we won't consider compartment 4 that is not relevant in our case. We will assume a flow from compartment 1 to outside given by a
transfer coefficients kip. The coefficient transfer values, in days™, taken from ICRP 78 are ko= 1.9404, kzp= 0.01155 and ks;= 0.0462.
We will suppose that k> and kps are unknown, although we know that their values will be about ki, = 0.8 and ky3 = 0.0078. We wish
estimate them taken experiment data from compartment 1 . The problem consist on decide by DOE the best moment to taken the sample.

kso

Figure 2. lodine biokinetic models (ICRP 78)

Hereit is downloaded the package Sysmodel (included in the Biokmod Tool available in http://www3.enusa.es/webM athematica/Public/Doc
s/biokmod.zip)
nz1= Needs["Biokmod™SysModel ']

SysModel , version 1.5.1 2013-11-12
In this exampleit is assumed an input into b; (t) compartment 1 is given by

nE= Bz {-27.183 7240814 27 137281 - 0.020 e -1 %+ 0.0194 e™%-9%F, 0, 0};


http://www3.enusa.es/webMathematica/Public/Docs/biokmod.zip
http://www3.enusa.es/webMathematica/Public/Docs/biokmod.zip
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ni4= Plot[B[[1]], {t, O, 3}, AxeslLabel - {"days", "r"}]

=

Out[4]= 10

P S IS B e L1 days
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Thiskind of input happensin real situations when thereis an input from the GIT (Gastro Intestinal) to the blood, for instance if theiodineis
intaken by orally. Then by (t) represents the input from GIT to blood. (When the input happens by inhalation the flow to the blood can be
represented by 34.4 7201 + 1,097 1101 1 0.808 ¢ 7102t 1 6,414 7100t 4 5458 ¢=2*! that is the function used in the article). The initial
conditionare{0, 0, 0}.
In this kind of experiment usually is used a isotope of iodine with a decay constant A (his value depend on the isotope). The coefficients
matrix is:

5= A =

CompartMatrix[3, {{1, 2, k12}, {1, 0, 1.9404}, {2, 3, k233, {3, 0, 0.01155},

{3, 1, 0.0462}}, 1] // Chop // TraditionalForm

—k12 — A — 1.9404 0 0.0462
Out[5])//TraditionalForm= k12 -k23-2 0
0 k23 -1 —0.05775

6= ShowODE[ {{-1.9404 - k12 -, 0, 0.0462}, {k12, -k23 -1, 0}, {0, k23, -0.05775-21}},
{0, 0, 0}, B, t, x] // TraditionalForm

outelradiionalForm=  {Xy/(t) = (=1 — k12 — 1.9404) xy(t) + 0.0462 x3(t) — 27.13 ¢~ #*%B" + 27.13 7280 — 0.027*14"" + 0.0194 £ %",
X' (t) = K12 X1 (t) + (A — k23) xo(t), x3' (1) = k23 X(t) + (—A — 0.05775) X3(t), X1(0) = 0, x2(0) = 0, x3(0) = O}

We represent the evolution of the iodine content in the compartment 1 where the samples will be taken (using ki» = 0.8 and ky3 = 0.0078).
We will refer to iodine 131 which has a radioactive half-life of 8 days, this meaning that radioactive decay constant A = In 2/8.02 day.
Then the compartmental matrix is:

n7= 1Todinel3lmatrix =
CompartMatrix[3, {{1, 2, 0.8}, {1, O, 1.9404}, {2, 3, 0.0078},
{3, 0, 0.01155}, {3, 1, 0.0462}}, Log[2] /8.02]

ouf7= {{-2.82683, 0., 0.0462}, {0.8, -0.0942273, 0.}, {0., 0.0078, -0.144177}}

nel= { XL[E_], x2[t_], x3[t_]} =
{X1[t], X2[t], X3[t]} /- SystemDSolve[iodinel3lmatrix, {0, 0, 0}, B, t, t, Xx] //
Chop;
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ne)= LogPlot[x1[t], {t, O, 50}, PlotRange » All, AxesLabel - {"days"™, "r"}]

0.1

Out[9]=

0.01

0.001
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The form of thefirst interval it is explained because in during thisinterval (about 3 days) is happening ainput b1(t) to compartment 1 and
negligible flow from other compartments reach the compartment 1. In the second interval the opposite happens.

We wish obtain Xi(g) = {0x/0k12, O%i/0ko3} ,1={1,2,3} to beused later for computing the Optimal Design.

We are going to apply different methods to obtain X(g) in order to make a comparison. Each method is computated in a new Mathematica

session in order to compare the computation time.

= QUItE[]

Method 1
Here will be obtain X(p) using eq(5) that we call the method of the extended matrix.
Ixa(t, ki2) Ox%a(t, ki2) 9xa(t, ki2)
Wecall : Xa= {xla: ——— X2a= ———, x3a= 7} and AK12 = A, ;
d k12 0 k12 0 k12
Oxa(t, ka3) 0%a(t, ka3) 0x3(t, kz3)
Xb={xlb= ———, x2a= , X3a= band Ak23 = A,
0 k23 0 k23 0 k23

ni1:= Needs["Biokmod™SysModel "]

SysModel, version 1.5.1 2013-11-12
2= A =

CompartMatrix[3, {{1, 2, k12}, {1, O, 1.9404}, {2, 3, k23}, {3, 0, 0.01155},
{3, 1, 0.0462}}, Log[2] /8.02]1 // Chop

ouzl= {{-2.02683 -k12, 0, 0.0462}, {k12, -0.0864273 -k23, 0}, {0, k23, -0.144177}}
ne= B= {-27.183 249814 27 137281 -0.020 -1 * +0.0194 -9, 0, 0};

na= X = {x1[t], X2[t], X3[t]};

nsi= eql = Thread [D[X, t] == A_X + B]

outsl= {X1'[t] = -27.13 e 24081 . 27, 13 ¢ 286" _
0.02e %%t 10,0194 009983 . (_2,02683-k12) x1[t] +0.0462x3[t],
X2'[t] =k12x1[t] + (-0.0864273 -k23) x2[t ], x3'[t] =k23x2[t] -0.144177x3[t ]}

ner= #icl = {x1[0] == 0, x2[0] == 0, x3[0] == 0};
n7= Xa = {xla[t], X2a[t], x3a[t]};

ner= Xb = {x1b[t], x2b[t], X3b[t]};
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Out[9]=

In[10]:=

Out[10]=

In[11]:=

Out[11]=

In[12]:=

In[13]:=

In[14]:=

Ak12 = D[A, k12]

{{-1, 0, 0}, {1, O, 0}, {0, O, 0}}

Ak23 = D[A, k23]

{{o0, 0, 0}, {0, -1, 0}, {0, 1, O}}

eg2 = Thread[D[Xa, t] == Ak12_.X + A.Xa]

{(xla'[t] = -x1[t] + (-2.02683 - k12) xla[t] +0.0462 x3a[t ],
x2a’'[t] ==x1[t] +kl2xla[t] + (-0.0864273 - k23) x2a[t ],
x3a’[t] = k23 x2a[t] -0.144177 x3a[t ]}

eq3 = Thread[D[Xb, t] == Ak23.X + A_Xb];
ic2 = {x1la[0] == 0, x2a[0] == 0, x3a[0] == 0};

ic3 = {x1b[0] == 0, x2b[0] == O, x3b[0] == 0};

Now egl and eg2, and the respectiveinitial conditionsicl and ic2 are combined obtaining the eg4

In[15]:=

Out[15]=

In[16]:=

out[16]=

eq4 = Join[eql, eq2, icl, ic2] // Chop

[X1'[t] =-27.13e 24081 1 27. 13 e 280" _

0.02e0 147t 10,0194 0993t . (_2,02683 -k12) x1[t] +0.0462x3[t],
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X2'[t] =K12x1[t] + (-0.0864273 - k23) x2[t ], x3'[t] = k23 x2[t ] - 0. 144177 X3 [t ],

xla'[t] = -x1[t] + (-2.02683 -k12) xla[t] +0.0462x3af[t ],
x2a'[t] ==x1[t] +kl2xlaft] + (-0.0864273 - k23) x2aft ],
x3a’[t] == k23 x2a[t] -0.144177x3a[t], x1[0] =0,

x2[0] =0, x3[0] =0, x1a[0] =0, x2a[0] =0, x3a[0] = }

eq5 = Join[eql, eq3, icl, ic3] // Chop

{Xl' [t] =-27.13 e24.08t 57 13 o-2.86t _

0.02e0 147t 10,0194 e 0093t . (_2,02683 -k12) x1[t] +0.0462x3[t],

X2'[t] =KI12x1[t] + (-0.0864273 - k23) x2[t ], x3'[t] = k23 x2[t ] - 0. 144177 X3 [t ],

x1b'[t] = (-2.02683 -k12) x1b[t ] + 0. 0462 x3b[t ],

x2b’[t] == k12 x1b[t] -x2[t] + (-0. 0864273 - k23) x2b [t ],
x3b’[t] ==x2[t] +k23x2b[t] -0.144177 x3b[t], x1[0] =0,
x2[0] =0, x3[0] =0, x1b[0] =0, x2b[0] == 0, x3b[0] == 0}

Them eg4 and eg5 can be solved when specific values of t, ki» and kp3 are given

In[17]

In[18]:=

fa[a_?NumberQ, b_?NumberQ, tl_?NumberQ] :=
Evaluate[{xla[t], x2a[t], x3a[t]} /-

NDSolve[Evaluate[eg4 /. {k12 » a, k23 » b}], Join[X, Xa],

fb[a_?NumberQ, b_?NumberQ, tl_?NumberQ] :=
Evaluate[{x1b[t], x2b[t], X3b[t]} /.

NDSolve[Evaluate[eg5 /. {kl12 » a, k23 » b}], Join[X, Xb],

Then x(p)(t) Ax1at] x1b[t]}.

In[19]

Xl[a_, b _, ti_] := {fa[a, b, ti][[1, 1]], fb[a, b, ti][[1, 111}

(t, 0, 100}]] /. t-tl

{t, 0, 100}1]1 /-t->1l

So for a=k12 = 0.80; b= k23= 0.0078, then x(p)(t) {x1at], x2a[t] x3a[t]} for t = {1,10,30} are (The computation time, in s, isthe first
value of the Output.)
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n201= Map[X1[0.80, 0.0078, #] &, {1, 10, 30}] // AbsoluteTiming

ouzo)= {0. 062506,
{{-0.722177, 0.00668556}, {0.000125787, 0.115799}, {0.0000414039, 0.0350599}}}

Other option faster than the previousis using the new function (Mathematica 9 or later isrequiered) Par amet ri cNDSol ve.

nei= eqda = ParametricNDSolve[eq4, {x1, x2, x3, xla, x2a, x3a}, {t, 0, 100}, {ki12, k233}71;
nzi= eqba = ParametricNDSolve[eq5, {x1, x2, x3, x1b, x2b, x3b}, {t, 0, 100}, {ki12, k23}71;
ne3r= Fa[a_?NumberQ, b_?NumberQ, t_?NumberQ] :=xla[a, b][t] /. egda
nrzai= Fb[a_?NumberQ, b_?NumberQ, t_?NumberQ] := x1b[a, b][t] /. egba

nes= X1[a_, b_, ti_] := { fa[a, b, ti], fb[a, b, ti]}

So for a=k12 = 0.80; b= k23= 0.0078, then x(p)(t) {x1a[t], x2a[t],x34[t]} for t = {1,10,30} are (The computation time, in s, is the first
value of the Output.)

nel= Map[X1[0.80, 0.0078, #] &, {1, 10, 30}] // AbsoluteTiming

oufz6)= {0., {{-0.722177, 0.00668556}, {0.000125787, 0.115799}, {0.0000414039, 0.0350599}}}

n27)= QUIE[]

Method 2

This method give the solution as function of the unknown parameters (k12 and k23) then when are given specific values of k12 and k23 the
ODE is numerically solved and the derivatives X(p) evaluated numerically in each point. To solve the ODE isused the Biomod function

SystemDSolve (it applies the Mathematica function NDSolve).
ni1:= Needs["Biokmod™SysModel "]

SysModel, version 1.5.1 2013-11-12

nei= A[k12_, k23 ] =
CompartMatrix[3, {{1, 2, k12}, {1, 0, 1.9404}, {2, 3, k23}, {3, 0, 0.01155},
{3, 1, 0.0462}}, Log[2] /8.02] // Chop

oufz)= {{-2.02683 - k12, 0, 0.0462}, {k12, -0.0864273 - k23, 0}, {0, k23, -0.144177}}

nEr= model [t1_?NumberQ, k12_?NumberQ, k23_?NumberQ] :=
model [t1, k12, k23] = {Xy[tl], Xo[tl], X3[tl]} /.
SystemNDSolve[A[k12, k23], {0, O, O},
{-27.18e2*-981+27.13e%-%%-0.020e 01"+ 0.0194e°-9%*, 0, 0},
{t, 0, 100}, t1, x];

Note: Instead of the before function can be used the following function that solved analytically the ODE when k12 and k23 take numeric
values but the take of computation is too longer

nmodel [t1_?NunberQ k12_7?NunmberQ k23_?NunberQ] : =
nodel [t1, k12, k23] = {x3[t1], x2[t1l], x3[t1l]} /. SystenDSolve[{...}, t, t1l, X];

We use the package Numerical Cal culus to compute the numerical derivations

n41= Needs["NumericalCalculus™"]

[ OXxu(t,ki2)  Oxa(t,Kiz)  Oxa(t,Ki2) _ [ OX1(t,Koz)  OXa(t,Kkpz)  OXa(t,Kps)
We call fa(tl, ko, k23)—{ e e = } and fb(t, kyo, k23)—{ m— e e } (for conve-

nience we write al, b2 instead of ki, Ka3)
Note that sometime the option ND[model[ti,x,b1],x,al,Scale->.01] should be used (see ND Help)
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nsi= Fafal , bl _, ti_] = ND[model [ti, X, bl], X, al]

ne)= fb[al_, bl_, ti_] z= ND[model[ti, al, y], Yy, bl]
Now we test the method using the same values that in the previous example, that is k12 = 0.80; k23 = 0.0078;

n7= Xl[a_, b_, ti_] = { fa[a, b, ti1[[1]], fb[a, b, ti1[[1]]}

ngi= Map[X1[0.80, 0.0078, #] &, {1, 10, 30}] // AbsoluteTiming

ougl= {0. 406247,
{{-0.722124, 0.00666625}, {0.000125691, 0.115797}, {0.0000413294, 0.0349157}}}

The solution is almost the same that the obtained using Method 1 and the computation time is a bit bigger.
nel= QUIE[]

Method 3

This method is similar to Method 2 but here is used the new Mathematica (9 o later) funcion Par anmet r i cNDSol ve.
1= Needs['"'Biokmod™SysModel "]

SysModel, version 1.5.1 2013-11-12

2= A =
CompartMatrix[3, {{1, 2, k12}, {1, 0, 1.9404}, {2, 3, k23}, {3, 0, 0.01155},
{3, 1, 0.0462}}, Log[2] /8.02]1 // Chop

ouz- {{-2.02683 ~k12, 0, 0.0462}, (k12, -0.0864273 -k23, 0}, {0, k23, -0.144177}}

nEi= B = {—27.13 @24-08t 57 13e72-86T_(_020e0-147t ., 0.0194 0-093t o, O};

n4:= eqs = ShowODE[A, {0, 0, 0}, B, t, X]

[t] =-27.183e2%% 127 1832801 _-0.02e %" +0.0194 e 098" 4
(-2.02683 - k12) x1 [t ] +0. 0462 X3 [t ], Xo'[t] = k12Xy [t ] + (-0.0864273 - k23) X[t ],

Out[4] {X]_/
X3'[t] = k23 xz[t] -0.144177 x3[t ], x1[0] =0, X2[0] =0, x3[0] =0}

nsi= sol = ParametricNDSolve[egs, {Xi1, X2, X3}, {t, 0, 100}, {kl12, k23}]

oufsl= {X1 —» Paranetri cFunction[<>],
X2 - Parametri cFunction[<>], X3 —» Paranetri cFunction[<>]}

ne)= Fa[al_?NumberQ, b_?NumberQ, t_?NumberQ] :=D[Xi[a, b], a][t] /. a-»al /. sol
n7= Fb[a_?NumberQ, bl_?NumberQ, t_?NumberQ] :=D[Xi[a, b], bl[t] /- b-> Dbl /. sol

ng= Xl[a_, b_, ti_] := { fa[a, b, ti], fb[a, b, ti]}

So for a=k12 = 0.80; b= k23= 0.0078, then X(p)® {x1at], x2a[t] x3a[t]} for t ={1,10,30} are (The computation time, in's, isthe first
value of the Output.)

ne)= Map[X1[0.80, 0.0078, #] &, {1, 10, 30}] // AbsoluteTiming
ouel= {0. 249968,

({-0.722177, 0.00668556}, (0.000125827, 0.115799}, {0.0000414037, 0.0350599}}}
n[1o}= QUIE[]

The solution isamost the same that the obtained using Method 1 and 2 and the computation timeis similar.
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Method 4

Oxy(t,Ki2)  OXp(t,Ki2)  OXa(t,Ki2)
K12 ' k12 ! oK1z

In this case we will obtain again { } but in this case we will use eq(8) with xo=0
Xpy (1) = Exp(A 1) Ay EXp(At) = b(t)

ni= A = {{-2.026827329246876 - k12, 0, 0.0462}, {k12, -0.08642732924687598 - k23, 0},
{0, k23, -0.14417732924687598} };

In[2]:= B

{-27.13e2* %+ 27.13e%%*-0.020e %1%+ 0.0194e°-99*, 0, 0};

nEl= Func[tl_?NumberQ, a_?NumberQ, b_?NumberQ, k_] := Module[{ml, AExp},
ml = MatrixExp[At] /. {k12 » a, k23 - b} // ExpandAll // Chop;
AExp = Map[Integrate[#l, {tau, O, t}] &,
Evaluate[ml /. t -> t - tau].Evaluate[D[A, k].Evaluate[ml /. t -> tau]],

{1}1;
Map[Integrate[#l, {tau, O, t}] &,
Evaluate[AExp /. t -> t - tau].Evaluate[B /. t -> tau], {1}] /. t - tl]

The solution of faiswrong (see the solution obtained with Method 1 and 2) and the time of computation istoo long. We discart this method
n41= {func[30, 0.80, 0.0078, k12], func[30, 0.80, 0.0078, k23]1} // AbsoluteTiming

Out[4]= {86.933725,
{{-0.00159739, -0.415486, 0.0167}, {0.0350599, -3.978464351720, 2. 082955628269} }}

Note that this function is equivalente to the previous function: X1[a_,b_,ti_]:={fa[a,b,ti][[1]1], fb[a,b,til[[1]11}

Conclusion: Method 1 and 3 are very fast and they are also the easiest for programming. We will compare both methodsin a OED

In[5]:= QUit[]

Optimal experiment design

We will suppose that ki, and ky3 are unknown, although we know that their values will be about k;, = 0.8 and ky3 = 0.0078. We wish
estimate them taken experiment data from compartment 1 . The problem consist on decide by DOE the best moment to taken the sample.
Wewill use D-optimal design.

Method 1

Here we will the optimal design experiment computing the derivatives using the method 1 that we have yet described

Wewish find t :{to,., tj, .. t,} of the model given by eg. (4). (or (5)) using D-optimal design when the analitycal expression of
x1(t, a, b) can not befound. [f(t, B) =xa(t, Ki2, k23)]

1.- It isdefined amodel f(t, B) where the unknown parameters are 8 = {a, b}. In our casewe cal B = {ki2, ko3}. [We write egda and
egba obtained when the method 1 has beed described |

ni= eqda = ParametricNDSolve|
{x17[t] = -27.13 24081427 137231 -0.02e 01"+ 0.0194 -8+
(-2.026827 - k12) x1[t] + 0.0462 x3[t],
X2’ [t] = k12 x1[t] + (-0.086427 - k23) x2[t], x3'[t] = k23 x2[t] - 0.1441773 x3[t],
xla’'[t] = -x1[t] + (-2.0268 - k12) xla[t] +0.0462" x3a[t],
x2a’ [t] = X1[t] + k12 xla[t] + (-0.086427 - k23) x2a[t],
x3a’[t] == k23 x2a[t] - 0.144177" x3a[t], x1[0] = 0, x2[0] == 0, x3[0] == O,
xla[0] = 0, x2a[0] = 0, x3a[0] = 0}, {x1, x2, x3, xla, x2a, x3a},
{t, 0, 100}, {k12, k23}];
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ni= eqba = ParametricNDSolve|
{x11t] =-27.13 @24-08"t 27 13e2-86t_( 0201471, (0.0194 0-093T
(-2.0268 - k12) x1[t] + 0.0462 x3[t], X2'[t] = k12 x1[t] + (-0.0864 - k23) x2[t],
X3’ [t] = k23 x2[t] - 0.1442 x3[t], x1b’ [t] = (-2.0268 - k12) x1b[t] + 0.0462" x3b[t],
x2b’ [t] = k12 x1b[t] - X2[t] + (-0.0864 - k23) x2b[t],
x3b’[t] = x2[t] + k23 x2b[t] - 0.14418 x3b[t], x1[0] == 0, x2[0] == O,
x3[0] = 0, x1b[0] == 0, x2b[0] == 0, x3b[0] == O}, {x1, x2, x3, x1b, x2b, x3b},
{t, 0, 100}, {k12, k23}];

o do

2.-Now itiscomputed V(f (1), {a, b)) ={=" 7

1= Fafa_?NumberQ, b_?NumberQ, t_7?NumberQ] := xla[a, b][t] /. egda

4= Fb[a_?NumberQ, b_?NumberQ, t_7?NumberQ] := xlb[a, b][t] /. egba
3.- Weneed to define the number of points n to be used in the optimal design.

4.- Itis evaluated V(f(t), B) at points t{to,..., tn}, obtaining X = {Xy, .., Xpjwith X ={ L AWy x = (dl Ay
dﬁl dﬁ1 dﬁp dﬁp
Because the sample will be taken in compartment 1, we extract of faand fb the derivatives corresponding to x (t)
ns= Xl[a_, b, ti_] := { fa[a, b, ti], fb[a, b, ti]}

5.- A typica eection for compute the covariance matrix is assumed that that the relationship between samples decays exponentially with
increasing time-distance between them, that is T" = {I;;} with |;;= exp {p|t; —t;[} .For computational purpose we have found more appropri-

ateto usethedistance d; = t; — ti_3, instead of t;, then ;= >} d; being dyp =to. That is for atwo points design . We suppose a 3-points
design. Thefirst is defined by the user

I where
nel= T = {{1' e—pdl’ e P (dl+d2)}' {e—pdl' 1, e—de}’ {e—p (d1+d2) s e—de’ 1}};
6.- Now it is computed the covariance matrix £ = o2 T

n7e= 3 = oZ*I‘;

We assume

ne= p=1; o =1;

Wewill also need givetheinitial valuesof g the standard deviation of the measures. We also assumed k12= 0.80, k23=0.0078
7.- Then we can obtain the information matrix

M= XTx1X
m:= X . Inversg[X]. Transpose X];
ner= ml[ti_] := Transpose[Map[X1[0.80, 0.0078, #] &, ti] ]- Inverse[=].
Map[X1[0.80, 0.0078, #] &, ti]

8.- Finally the determinant of the information matrix is maximized as function of dO, d1 and d2. We constrain the d values to a maximun of
t=50 becouse to longer time the concentration will be very low (lower than the detection limit)

0= obJ [dO_?NumericQ, d1_?NumericQ, d2_?NumericQ] := Det[ml[{dO, d1+d0O, dO +dl+d2}]]
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ni= soll = NMaximize[ {obj[dO, d1, d2], 0 < dO < 50, 0.02 < d1 < 50, 0.02 < d2 < 50},
{d0, d1, d23}] 7/ Timing

InterpolatingFunction:dmval :

Input value {110.013} lies outside the range of data in the interpolating function. Extrapolation will be used. >

InterpolatingFunction:dmval :

Input value {110.013} lies outside the range of data in the interpolating function. Extrapolation will be used. >

InterpolatingFunction:dmval :

Input value {110.013} lies outside the range of data in the interpolating function. Extrapolation will be used. >

General:stop : Further output of InterpolatingFunction::dmval will be suppressed during this calculation. >

oufiy= {1. 812500, {0.0160671, {dO - 0.748667, d1 - 7.23841, d2 - 3.66134}}}

2= QUItE[]

Method 3
Here we will the optimal design experiment computing the derivatives using the method 3 that we have yet described.

1.- Itisdefined amodel f(t, B) wherethe unknown parametersare 8 = {a, b}. Inour casewecal B = {kiz, kos}. [We write the ODE of
the system obtained when we described the method 3

nip= sol = ParametricNDSolve[
[x1'[t] = -27.13" 2408 £, 27,137 256 t_0.02" e0-147 4 0.0194 009 t,
(-2.026827" - k12) x; [t] + 0.0462" x3[t],
Xo' [t] = K12 X, [t] + (-0.08643" - k23) X, [t], X3’ [t] = k23 X, [t] - 0.1442" x5 [t],
x1[0] = 0, X2[0] = 0, x3[0] = 0}, {X1, X2, X3}, {t, 0, 100}, {k12, k23}];

df(t) df(t)

2.-Now it iscomputed V(f(t), {a, b})={¥,¥ ,

nezp= Fa[al_?NumberQ, b_?NumberQ, t_7?NumberQ] :=D[X;[a, b], a][t] /. a->al /. sol

nEr= Fb[a_?NumberQ, bl_?NumberQ, t_7?NumberQ] :=D[Xi[a, b], b][t] /- b-> Dbl /. sol

3.- Weneed to define the number of points n to be used in the optimal design.

4- Itis evaluated V(f(t), B) at points t{to,..., t.}, obtaining X = {Xy, ..., Xp}with X :{%, %}, o Xp =

Because the sample will be taken in compartment 1, we extract of faand fb the derivatives corresponding to x,(t)

df to) df (tw)
{dﬁp’ dﬂ,,} '
n4= Xl[a_, b _, ti_] := { fa[a, b, ti], fb[a, b, ti]}

5.- A typica election for compute the covariance matrix is assumed that that the relationship between samples decays exponentially with
increasing time-distance between them, that is T = {I;;} with I;;= exp {plt; —t;[} .For computational purpose we have found more appropri-

ate to use the distance d; = t; — tj_;, instead of t;, then tj= >} d; being dy =ty . That is for a two points design . We suppose a 3-points
design. Thefirst is defined by the user

I where
nGl= T = {{l, e—pdl, e P (dl+d2)}, {e—pdl, 1, e—de}, {e—p (d1+d2) s e—de, l}};
6.- Now it is computed the covariance matrix £ = o? T

Infel:= & = GZ*I';
We assume

n7= p=1; o =1;

Wewill also need givetheinitial values of B8 the standard deviation of the measures. We also assumed k12= 0.80, k23=0.0078
7.- Then we can obtain the information matrix
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M= XTx1X
m:=X . Inversg[XZ]. Transpose[X];
ngl= ml[ti_] := Transpose[Map[X1[0.80, 0.0078, #] &, ti] ]- Inverse[Zz].
Map[X1[0.80, 0.0078, #] &, ti]

8.- Finally the determinant of the information matrix is maximized as function of dO, d1 and d2. We constrain the d values to a maximun of
t=50 becouse to longer time the concentration will be very low (lower than the detection limit)

)= obj [dO_?NumericQ, d1_?NumericQ, d2_?NumericQ] := Det[ml[{dO, d1+dO, dO +dl+d2}]]
n1or= soll = NMaximize[ {obj[dO, d1, d2], 0 <dO <50, 0.02 <dl1 <50, 0.02 < d2 < 50},
{d0, d1, d23}] 7/ Timing

InterpolatingFunction:dmval :

Input value {110.013} lies outside the range of data in the interpolating function. Extrapolation will be used. >

InterpolatingFunction:dmval :

Input value {110.013} lies outside the range of data in the interpolating function. Extrapolation will be used. >

InterpolatingFunction:dmval :

Input value {110.013} lies outside the range of data in the interpolating function. Extrapolation will be used. >

General:stop : Further output of InterpolatingFunction::dmval will be suppressed during this calculation. >

oufi0= {2.031250, {0.0160593, {dO - 0.748664, d1 - 7. 23683, d2 - 3.661}}}

Conclusion: The time of computation of Method 1 and 3 are practically the same, method 1 a bit faster tham method 3,, but Method
3isthe easiast for programming

Hereit is shown graphically theiteration process of d1 and de

n11= d0 = 0.748664;
n1zi= FindMaximum[{obj[dO, d1, d2], 0.02 < dl1 < 10, 0.02 < d2 < 10}, {{dl1, 5}, {d2, 6}},
StepMonitor =» Print[{"d1:", d1, "'d2:", d2}]]
{d1:, 5., d2:, 6.}
(d1:, 5.71153, d2:, 5.36494}
{d1:, 6.55693, d2:, 4.00819}
{d1:, 7.00631, d2:, 3.78098}
(dl:, 7.1993, d2:, 3.67541)
oufiz= {0. 0160593, {dl - 7.23569, d2 » 3.66131}}

n[13y= pts =
Reap [FindMaximum[ {obj[dO, d1, d2], 0.02 < d1 < 10, 0.02 < d2 < 10},
{{d1, 5}, {d2, 6}}, StepMonitor :» Sow[{d1l, d2}111([[2, 111;
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4= ContourPlot[obj[dO, d1, d2] // Minus, {d1, 0.02, 10}, {d2, 0.02, 10},
Epilog -» {Red, Line[pts], Point[pts]}]

10

out[14]=

n[15)= QUIE[]

Biokinetic model of Ciprofloxacin and Ofloxacin

The mode

The following differential equations result from the model ofA. Sanchez-Navarro, C. Casguero, and M. Welss, 'Distribution of
Ciprofloxacin and Ofloxacin in the Isolated Hindlimb of the Rat', Pharmaceutical Research, 16: 587-591 (1999):

Q PS PS Q
Cout' [t]+]|—+ —|Cout[t] - —Cru[t] = —cCin[t]
Vp Vp Vp Vp
PS PS Vb
Cry' [t] + (7 +Kon ) Cryl[t] - — Cout [t] - Kott —GCp[t] =0
V1 Tu Tu
, VTu
Ct' [t] +Koff CTo[t] - Kon — C1u[t] =0
Tb

Initial conditions: Coyt [0] = 0, ¢c1y[0] =0, c1p[0] =0
ci(t) , with i = {out, Tu, Tb}, represents the concentration of a sustance in differentes part of the models. We consider the case where with Q
= 3mLmn?, Vp, = 6411, Vp, 0.973, Vo, = 1, and P S= 2.714, then replacing V1, Vp, Vi, PS, Q for their values where for conve-
nientswecall xy(t), Xo(t) and xz(t) intead of Coyt (t ), Cy (t)andcm, ()

X1/ (t) = —5.87256 X1 (t) + 2.7893 Xa(t) + 3.08325 iy (1)

X2 (t) = 0.423335 x3(t) + (—kon — 0.423335) X(t) + 0.15598 k¢ Xa(t)

X3/ (1) = 6.411 Kon X2(t) — Kot Xa(t)
X1(0) = %2(0) = x3(0) =0

©)

Weuse G(t) =13610. 1t e 11218t (According to G. Sanchez Biokmod: A Mathematica toolbox for modeling Biokinetic Systems’.
Mathematica in Education and Research: 10 (2) 2005. ISSN/ISBN: 1096-3324 using the experimental data obtained by of A. Sanchez-
Navarro et a. )

Then, on notation matrix:
X (1) =Xo EXp(At) + EXp(At) = b(t) (20

where
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X(®) = {xa(h), Xa(), x3(®)}7
Optimal experiment design
This modd (eq9) is represented in Mathematica by the ODE

ni}= eqox = { X1"[t] == -5.87256 x1[t] + 2.78931x2[t] + 41963.3 tExp[-11.216t],
X2"[t] == 0.423335x1[t] + (-kon - 0.423335) x2[t] + 0.155982 koff x3[t],
X3"[t] == 6.411konx2[t] - koffx3[t],
x1[0] == 0, x2[0] == 0, x3[0] == 0};
We want to estimate the values of ko, and k; making an experiment that consist on in measure the concentration of a compount at X;(t) for
t {to,.., ti, ... tn} anthen estimatekoy, and Ky by fitting xa(t, Kon, Kgs) -

The problem is can not be found an analitycal expresion of x;(t, kon, k) because the ODE system eg. (4). (or (5)) can not be solved if
Kon, Koft areparameters. However xi(t, Kon, Kgr) has solution when Kon, Kot take numeric values, thisfact is used by some nonlinear
regresion method to estimated Kon, Kofs -

Wewish find t :{to,.., t, ... t,} of the mode given by eq. (4). (or (5)) using D-optimal design when the analitycal expresion of
Xa(t, Kon, Kyr) can not be found. [f(t, B) =xa(t, Kon, Kefr)]
1.- Itisdefined amode f(t, B) wherethe unkown parametersare 8 = {kon, koff}.

nz= sol = ParametricNDSolve[eqox , {x1, x2, x3}, {t, 0, 100} , {kon, koff}]

ouzl= {x1 - Parametri cFunction[<>],
x2 - Paranetri cFunction[<>], x3 » Paranetri cFunction[<>]}

g0 d

2.-Now it iscomputed V(f(t), {a, b}) ={ e &

)= Fa[al_?NumberQ, b_?NumberQ, t_7?NumberQ] :=D[x1l[a, b], a][t] /-a->al /. sol

n4i= Fb[a_?NumberQ, bl _ 7?NumberQ, t_?NumberQ] :=D[x2[a, b], b][t] /- b- Dbl /. sol

3.- Hereis defined the number of points n to be used in the optimal design.

df to) df ()
@, T &,

4.- Itisevaluated V(f(t), B) a pointst{to,..., t-}, obtaining X = {Xq, ..., Xp}with X; = %, %}, o Xp =1

ns= Xl[a_, b_, ti_] := { fa[a, b, ti], fb[a, b, ti]}

nel= X1[0.7, 0.11, 0.5] // AbsoluteTiming

outl= {0. 093774, {-0.837181, 0.361595}}

Test OK( The same value that using Method 1)

6.- A typica eection for compute the covariance matrix is assumed that that the relationship between samples decays exponentially with
increasing time-distance between them, that is T" = {I;;} with |;;= exp {p|t; —t;[} .For computational purpose we have found more appropri-

ateto usethedistance d; = t; — ti_s, instead of t;, then t;= >} d; being dyp =to. That is for atwo points design . We suppose a 3-points
design. Thefirst is defined by the user

I where
FoldList[Plus, Subscript[d, 0], Table[dj, {i, n}]];
fFLi_, j ] = Which[i .1, i<, ePdid §sj, e-pz&;}dk];

nn=2;
T =Array[ff, {(nn+1, nn+1}]

6.- Now it is computed the convariance matrix £ = o2 T

Wetake:

n7= p=1; o =1;

Wewill also need givetheinitial valuesfor the 8 parameters and the standard deviation of the measures. kon= 0.7, koff=0.11
7.- Then we can obtain the information matrix
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M= XTz1X
m:=X . Inversg[XZ]. Transpose[X];

ngl= ml[ti_] := Transpose[Map[X1[0.7, 0.11, #] &, ti] ]. Inverse[Z].
Map[X1[0.7, 0.11, #] &, ti]

8.- Finally the determinant of the information matrix is maximized as function of dO, d1 and d2. We constrain the d values to a maximun of
d;=10 becouse to longer time the concentration will be very low (lower than the detection limit)

For n (number of observations)= 2
= T = {{l, e“’dl}, {e"’dl, 1}};
In[10]= X = GZ*I‘;

1= ml[ti_] := Transpose[Map[X1[0.7, 0.11, #] &, ti] ]. Inverse[Z=].
Map[X1[0.7, 0.11, #] &, ti]

2= obj [dO_?NumericQ, d1_?NumericQ] := Det[ml[{dO, d1+d0}]]
3= sol2 = NMaximize[ {obj[dO, d1], 0.02 < dO < 10, 0.02 < d1 < 10}, {dO, d1}]
ouiz= {2426.54, {d0 - 1.57416, d1 - 4. 4425}}
For n (number of observations)= 3
- T = {{1, ePdl eP (d1+d2)}, {e—pdl, 1, e_de}’ {e (dled2) ~g-pd2 1}};
In[15]= = = oZ*I‘;
niel= obj [dO_?NumericQ, d1_?NumericQ, d2_?NumericQ] = Det[ml[{dO, d1+d0O, dO+dl+d2}]]
7= sol3 = NMaximize[ {obj[dO, d1, d2], 0.02 < d0 < 10, 0.02 < d1 < 10, 0.02 < d2 < 10},

{do, di, d2}]
ouf17)= {4322. 28, {d0 - 1.56996, d1 - 3.58403, d2 -» 3. 15854} }

For n (number of observations)= 4

nps= T = {{1 e—pdl’ @~P (d1+d2) , eP (d1+d2+d3)},
{e-pdl’ 1, eP92, g» (d2+d3)}’
{e—p (d1+d2) g-pd2 9 e—pd3}’
{e-p (d1+d2+d3)  g-p (d2+d3) ~o-pd3 1}};
S = %% T,
npop= ml[ti_] := Transpose[Map[X1[0.7, 0.11, #] &, ti] ]. Inverse[z].
Map[X1[0.7, 0.11, #] &, ti]

in20= obj [dO_?NumericQ, d1_7?NumericQ, d2_?NumericQ, d3_?NumericQ] :=
Det[ml[{dO, d1 +dO, dO+dl+d2, dO+dl+d2+d3}]]

nz1- sol4 = NMaximize[ {obj [dO, d1, d2, d3], 0.02 < dO < 10, 0.02 < d1 < 10,
0.02 < d2 < 10, 0.02 < d3 < 10}, {d0, d1, d2, d3}]

ou211= {5871. 95, {dO0 - 1.55933, d1 -» 2.90892, d2 » 2.59358, d3 - 3. 07663} }

Conclusion: The observations will be taken: n, t0, t1,t2,t3}
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nezi= {{"'Observations 2:", dO, d1+d0} /. sol2[[2]],
{""Observations 3:", dO, d1+d0, dO+dl1+d2} /. sol3[[2]],
{""Observations 4:", dO, d1+d0, dO+dl1+d2, dO+dl+d2+d3} /. sol4[[2]]}

ou22= {{Cbservations 2:, 1.57416, 6.01666}, {Cbservations 3:, 1.56996, 5.15399, 8. 31253},
{Cbservations 4:, 1.55933, 4.46826, 7.06183, 10.1385}}

3= QUItE[]

Michaelis-M enten

Themode
X
kll
—>

X e
1 d 2

kil

Vi | Km

In this case the drug transference between compartments will be considered as a linear kinetic process described by the transfer coefficients
k12 and k21. However, the elimination process will be non-linear as it happens for instance in hepatic metabolism, and the eimination rate
of the drug can mathematically be expressed by the Michaelis-Menten equation with parameters V m=maximum transformation speed and
km=Michaelis-Menten constant. The drug administration will be assumed to be an impulsive input (bolus).

1.- Itisdefined amodel f(t, B) wherethe unkown parametersare 8 = {a, b}.
Vmax = 0.2, km=0.3

nap= Vmax = 0.2; km = 0.3; V1=1;

Vmax x1[t] / V1

nl= eql X1"[t] = -k X1[t] +kp1 X2[€] -

km+x1[t] /V1

3= eq2 X2 " [t] == ko X1[t] - koy X2[1t];

It can be solved as function of k12 and k21:
n@41= sol = ParametricNDSolve[{eql, eq2, x1[0] == 1, x2[0] == 0}, {x1, X2},
{t, 0, 100}, {kiz, k21}]

ou4= {x1 - Parametri cFunction[<>], x2 - Parametri cFunction[<>]}

Wewish find t :{to,.., ti, ... tn} ) using D-optimal design when the analitycal expresion of xi(t, ka, ky) can not be found. [f(t, 8)
=x1(t, Ka, Kyl

2.-Now it iscomputed V (f(t), {a, b}):{df(t) di®

“da ' db )
ns)= Fa[al_?NumberQ, b_?NumberQ, t_7?NumberQ] :=D[x1l[a, b], a][t] /-a->al /. sol
ne)= Fb[a_?NumberQ, bl_?NumberQ, t_7?NumberQ] :=D[x1l[a, b], b][t] /- b-> bl /. sol

3.-It is defined the number of points n to be used in the optimal design.
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4.- Itisevaluated V(f(t), B) a pointst{to,..., t-}, obtaining X = {Xy, .., Xp}with X, = {4~ db

_ g dfi(to)
G e Xp =1

&, T &,

n7= Xl[a_, b_, ti_] := { fa[a, b, ti], fb[a, b, ti]}
Wetest using typical values of ki: k12 = 0.03, k21 = 0.02 for t:{ 1,3,10}
nel= Map[X1[0.03, 0.02, #] &, {1, 3, 10}] // AbsoluteTiming

ouisl= {0. 062493, {{-0.867671, 0.0135637}, {-1.84457, 0.0962505}, {-0.248479, 0.167842}}}

6.- A typical eection for compute the covariance matrix is assumed that that the relationship between samples decays exponentially with
increasing time-distance between them, that is ' = {I;;} with I;;= exp {plt; -t;[} .For computationa purpose we have found more appropri-

ate to use the distance d; = t; — tj_1, instead of t;, then tj= 3} d; being dy =ty . That is for atwo points design . We suppose a 3-points
design. Thefirst is defined by the user

I where
o= T = {{l, e—pdl’ e P (dl+d2)}' {e—pdl' 1’ e—de}’ {e—p (d1+d2) s e—de’ 1}};;
6.- Now it is computed the convariance matrix £ = g2 T

niol= = = o2 % T

Wetake:
= p=1; o =1;

In[12]:= X

out12l= {{l, e—dl’ e—dl—dZ}, {e—dl, 1, e—dZ}, {e—dl—dZI e—dZ’ l}}

Wewill dso need givetheinitial values for the 8 parameters and the standard deviation of the measures. ka= 0.03, kb=0.02
7.- Then we can obtain the information matrix

M= XTz1X
m:= X . Inverse{X]. Transpose[X];
n13= ml[ti_] := Transpose[Map[X1[0.03, 0.02, #] &, ti] ]. Inverse[Zz].
Map[X1[0.03, 0.02, #] &, ti]
in14= obj [dO_?NumericQ, d1_?NumericQ, d2_?NumericQ] := Det[ml[{dO, d1+d0O, dO+dl+d2}]]
5= soll = NMaximize[ {obj[dO, d1, d2], 0 <dO < 10, 0 <dl <10, O0< d2 < 10}, {dO, d1, d2}71 //
Timing

ouis= {3. 421875, {0.189599, {d0 - 3.02083, d1 - 3.36409, d2 - 3.029}}}

nel= {d0, d1+d0, dO+d1+d2} /. soll[[2, 2]]

oufiel= {3. 02083, 6.38492, 9.41392}

o o

2.-Now itiscomputed V(f (1), {a, b)) ={= "~

n17= Fa[al_?NumberQ, b_?NumberQ, t_?NumberQ] :=D[x1l[a, b], a][t] /- a->al /. sol

nel= Fb[a_?NumberQ, bl_?NumberQ, t_?NumberQ] :=D[x1l[a, b]l, b][t] /- b-> bl /. sol

3.- Hereis defined the number of points n to be used in the optimal design.

df (tn)

4 Itisevaluated V(f(t), B) at pointst:{to,..., to}, obtaining X = {Xy, ..., Xp)with xlz{%, R
1 1

df (to) df (tn)
Xo={—— -
K= - G

npop= Xl[a , b, ti_] := { fa[a, b, ti], fb[a, b, ti]}
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Wetest using typical values of ki: ka=0.03, kb = 0.02
n2o= Map[X1[0.03, 0.02, #] &, {1, 3, 10}] // AbsoluteTiming

oufo)= {0., {{-0.867671, 0.0135637}, {-1.84457, 0.0962505}, {-0.248479, 0.167842}}}

6.- A typical election for compute the covariance matrix is assumed that that the relationship between samples decays exponentially with
increasing time-distance between them, that is T = {I;;} with I;;= exp {plt; —t;[} .For computational purpose we have found more appropri-

ate to use the distance d; = t; — tj_;, instead of t;, then tj= >} d; being dy =ty . That is for a two points design . We suppose a 3-points
design. Thefirst is defined by the user

I where

In[21] T = {{l, e P di ) e P (d1+d2) } s {e-p di s 1, e P d2} ) {e-p (d1+d2) s e P d2 ) l}} 1
6.- Now it is computed the convariance matrix £ = o2 T

In[22] Z = 02 * I
Wetake:

n23= p=1; o =1;

n24:= =

oupa= {{1, e i1 e—dlde}’ {efdly 1, e—dZ}, {e—dl—dZ’ e 42, 1}}

Wewill also need givetheinitial values for the 8 parameters and the standard deviation of the measures. ka= 0.03, kb=0.02
7.- Then we can obtain the information matrix

M= XTx1X
m:= X . Inversg[X]. TransposeX];

nes= ml[ti_] := Transpose[Map[X1[0.03, 0.02, #] &, ti] ]. Inverse[z].
Map[X1[0.03, 0.02, #] &, ti]

nz6)= soll = NMaximize[ {obj[dO, d1, d2], 0 <dO < 10, 0<dl< 10, 0<d2 < 10}, {dO, d1, d2}]
ouze)= {0. 189599, {dO - 3.02083, d1 - 3.36409, d2 -» 3.029}}
The observation should be taken (i):

ne7= {d0, d1+d0, dO+d1l+d2} /. soll[[2]]

ou27)= {3. 02083, 6.38492, 9.41392}



