EUREKA LASERES DE RAYOS: EL MUNDO FILMADO A CAMARA LENTA.

En el diario El País de 5 de agosto de 2017 contenía una noticia cuyo texto nos sirve para ilustrar la entrevista que vamos a realizar a nuestro entrevistado de hoy que decía:

“Es posible que, en unos años, los investigadores españoles sean capaces de poder filmar una película a nivel molecular con rayos X. O de conducir nanocápsulas repletas de medicinas para atacar a los tumores en su propio núcleo. Recientemente, la Fundación BBVA concedió 50 becas Leonardo a los proyectos de investigación más innovadores de España. Entre ellos se encontraban los investigadores Carlos Hernández García y Pablo del Pino, que investigan la tecnología molecular en campos tan dispares como la nanotecnología óptica y la nanomedicina.
Carlos Hernández, profesor de la Universidad de Salamanca y miembro del grupo de Investigación en Aplicaciones Láser y fotónicas, es el responsable del proyecto sobre nanotecnología ultrarrápida, basado en crear “unos láseres muy peculiares. Hemos sido capaces de crear un rayo láser de rayos X, algo muy difícil hasta el momento debido a la pequeña longitud de onda de estos rayos”, explicaba Carlos. En este programa, que puedes escuchar AQUÍ, lo entrevistamos

Carlos Hernández García es miembro del activo grupo de  Grupo de Investigación en Aplicaciones del Láser y Fotónica de la nuestra universidad. Con frecuencia nos sorprende con nuevos descubrimientos.  Como ejemplo trascribimos la descripción hecha por la agencia DICYT en mayo de 2017 a propósito de la publicación en la revista Optica, de la que nuestro entrevistado era coautor:

 Un equipo liderado por los investigadores de Salamanca ha trasladado la generación de haces vectoriales al ultravioleta lejano, el rango que está cerca de los rayos X. Lo sorprendente del trabajo es el cambio de enfoque a la hora de generar estos haces: en vez de aplicar la tecnología usada en el rango visible e infrarrojo para controlar las propiedades de un haz estándar ultravioleta, han diseñado un mecanismo para generar directamente un haz ultravioleta con estas propiedades. Para ello han utilizado una técnica en la que llevan años trabajando con muy buenos resultados, conocida como generación de armónicos de orden elevado. Consiste en generar un haz infrarrojo intenso, pero que en interacción con los átomos de un gas se convierte en otro haz de mayor frecuencia (menor longitud de onda), alcanzando el rango del ultravioleta lejano y de los rayos X.

 

“Lo más interesante para nosotros es que algunas propiedades del haz infrarrojo se trasladan al ultravioleta, entre ellas, la distribución de polarización del haz”, señala Íñigo Sola. El trabajo experimental fue desarrollado por Carlos Hernández García e Íñigo Sola, investigadores de la Universidad de Salamanca, en el Centro de Láseres Pulsados de Salamanca, corroborando las simulaciones teóricas previas desarrolladas por el grupo ALF-USAL. Además, las simulaciones teóricas han desvelado que el nuevo haz vectorial se emite en forma de pulsos de attosegundo (la trillonésima parte de un segundo).

 Para generar haces vectoriales infrarrojos, que mediante el proceso de generación de armónicos se trasladan al ultravioleta, los investigadores han utilizado un dispositivo desarrollado por sus colaboradores en la Universidad de Southampton (Reino Unido). Se trata de una máscara nanoestructurada de fabricación muy compleja que es capaz de modificar la distribución de polarización del haz infrarrojo. En definitiva, “hemos sido capaces de generar directamente un haz con estas propiedades en el rango ultravioleta, y es la primera vez que se consigue”, resume Carlos Hernández García, primer firmante del artículo. Además, “no vemos ningún límite fundamental para que esta tecnología se pueda extender a los rayos X”, añade.

 Uno de los aspectos más destacados es la “capacidad de focalización” de este tipo de haces radiales de luz, es decir, “permiten concentrarlos mucho mejor en el espacio” y esto implica tener una gran resolución. Por lo tanto, su generación en el rango del ultravioleta e incluso rayos X, puede ser un avance importante para la microscopía, con la posibilidad de obtener imágenes en una escala extremadamente pequeña, del orden de los nanómetros, la millonésima parte de un milímetro. “Ya se obtienen imágenes experimentales con haces ultravioleta de un tamaño de cientos de nanómetros, pero con la polarización normal, así que nosotros pensamos que esto puede tener más aplicaciones”, apunta Julio San Román. Por otro lado, respecto a los haces azimutales, “ya hay investigadores que los utilizan en el infrarrojo, pero trasladados al ultravioleta, pueden servir para generar campos magnéticos a una escala mucho más pequeña”, señala.

Todo ello supone que la comunidad científica cuenta a partir de ahora con una nueva herramienta que puede ser de gran utilidad para el desarrollo de nanodispositivos y que además resulta bastante asequible. “Hay centenares de laboratorios en todo el mundo que tienen la capacidad para realizar este mismo experimento, por lo que estos nuevos haces vectoriales en el ultravioleta podrían llegar a convertirse, en pocos años, en una herramienta de gran utilidad”, comentan. En la actualidad, ya están analizando el campo magnético que se genera y las aplicaciones novedosas que puede tener.

 

guillermo
Aún no hay comentarios.

Deja un comentario


*

Política de privacidad