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Abstract. We find some equivalences of the derived category of coherent sheaves on
a Gorenstein genus one curve that preserve the (semi)-stability of pure dimensional
sheaves. Using them we establish new identifications between certain Simpson moduli
spaces of semistable sheaves on the curve. For rank zero, the moduli spaces are
symmetric powers of the curve whilst for positive rank there are only a finite number
of non-isomorphic spaces. We prove similar results for the relative semistable moduli
spaces on an arbitrary genus one fibration with no conditions either on the base or on
the total space. For a cycle EN of projective lines, we show that the unique degree
0 stable sheaves are the line bundles having degree 0 on every irreducible component
and the sheaves O(−1) supported on one irreducible component. We also prove that
the connected component of the moduli space that contains vector bundles of rank r
is isomorphic to the r-th symmetric product of the rational curve with one node.
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Ministry for Education and Science. D. Sánchez acknowledges as well support from the European
Union through the FP6 Marie Curie RTN ENIGMA (Contract number MRTN-CT-2004-5652).

1
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Introduction

Elliptic fibrations have been used in string theory, notably in connection with mirror
symmetry on Calabi-Yau manifolds and D-branes. The study of relative moduli spaces
of semistable sheaves on elliptic fibrations, aside from its mathematical importance,
provides a geometric background to string theory. In the case of integral elliptic fibra-
tions, a complete description is already known and among the papers considering the
problem we can cite [3, 7, 8, 21].

A study of these relative spaces for a more general class of genus one fibrations (for
instance, with non-irreducible fibers and even singular total spaces) turns out to be an
interesting problem.

On the one hand, for sheaves of rank 1 a fairly complete study of a class of these
moduli spaces (compactified relative Jacobians), including those associated to relatively
minimal elliptic surfaces, was carried out by one of the authors in [23, 24] (see also
[11, 12]). On the other hand, nowadays it is well understood the efficient key idea of
the ”spectral cover construction” discovered for the first time by Friedman-Morgan-
Witten in [15] and widely used later by many authors. The method shows how useful
is the theory of integral functors and Fourier-Mukai transforms in the problem. The
study developed by two of the authors in [19] and [20] on relative integral functors for
singular fibrations gives a new insight in this direction.

From the results in that paper one gets new information about moduli spaces of
relative semistable sheaves of higher rank for a genus one fibration p : S → B, that is,
a projective Gorenstein morphism whose fibers are curves of arithmetic genus one and
trivial dualizing sheaf but without further assumptions on S or B.

The fiber of the relative moduli space over a point b ∈ B is just the absolute moduli
space of semistable sheaves on Sb, so that in order to start with the relative problem
one has to know in advance the structure of the absolute moduli spaces for the possible
degenerations of an elliptic curve. There are some cases where the structure of the
singular fibers is known. For smooth elliptic surfaces over the complex numbers, the
classification was given by Kodaria [22] and for smooth elliptic threefolds over a base
field of characteristic different from 2 and 3, they were classified by Miranda [25]. In
both cases, the possible singular fibers are plane curves of the same type, the so-called
Kodaira fibers. Nevertheless, in a genus one fibration non-plane curves can appear as
degenerated fibers. So that our genus one fibrations may have singular fibers other
than the Kodaira fibers. The study of the moduli spaces of vector bundles on smooth
elliptic dates back to Atiyah [1] and Tu [37], who proved that for an elliptic curve
X there is an isomorphism M(r, d) ≡ SymmX, where m = gcd(r, d), between the
moduli space of semistable sheaves of rank r and degree d and the symmetric product
of the curve. A very simple way to prove this isomorphism is by using Fourier-Mukai
transforms (cf. [29, 18]). This method has been generalized to irreducible elliptic curves
(i.e., rational curves with a simple node or cusp) in [2, Chapter 6]) obtaining that
M(r, d) ≡ SymmX, where m = gcd(r, d) also in this case.

In the case of singular curves, the moduli spaces of semistable torsion free sheaves
were first constructed and studied by Seshadri [31]; his construction can now be seen
as a particular case of the general construction of the moduli spaces of semistable
pure sheaves due to Simpson [34]. The properties of these moduli spaces and their
degeneration properties have been studied by many authors (see, for instance, [32, 26,
27, 11, 12, 23, 24]).
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The paper is divided in two parts. In the first part, we consider X an arbitrary
Gorenstein genus one curve with trivial dualizing sheaf. The group of all integral
functors that are exact autoequivalences of Db

c(X) is still unknown and a criterion
characterizing those Fourier- Mukai transforms that preserve semistability for a non-
irreducible curve of arithmetic genus 1 seems to be a difficult problem. Here we find
some equivalences of its derived category Db

c(X) of coherent sheaves that preserve the
(semi)-stability of pure dimensional sheaves. One is given by the ideal of the diagonal
and the other is provided by twisting by an ample line bundle (see Theorem 1.20). Our
proof follows the ideas in [7, 29] where the result was proved for a smooth elliptic curve
and in [2] for an irreducible singular elliptic curve. The results of this section allow
to ensure that for rank zero, the moduli spaces are the symmetric powers of the curve
whilst for positive rank there are only a finite number of non-isomorphic moduli spaces
(see Corollary 1.25). Unlike the case of a smooth curve, moduli spaces of semistable
sheaves on a curve with many irreducible components are not normal (even in the case
where the rank is 1). Its structure depends very strongly on the particular configuration
of every single curve. The difficulty in determining the stability conditions for a sheaf
in this case points out the relevance of the identifications of Corollary 1.25. In fact,
for a curve with two irreducible components endowed with a polarization of minimal
degree, they reduce the study either to the case of rank 0 or degree 0. Coming back
to the relative case, the section finishes with Corollary 1.28 which establishes new
identifications between certain relative Simpson moduli spaces of (semi)stable sheaves
for a genus one fibration.

In the second part, we focus our study in a curve of type EN and in the case of
degree 0 which is particularly interesting as in this case semistability does not depend
on the polarization. Proposition 2.3 computes the Grothendiek group of coherent
sheaves for any reduced connected and projective curve whose irreducible components
are isomorphic to P1. The discrete invariants corresponding to the Grothendieck group
behave well with respect to Fourier-Mukai transforms and are important tools for the
analysis of the moduli spaces. Although a description of all torsion-free sheaves on
a cycle of projective lines EN is known, as we mentioned above, it is by no means a
trivial problem to find out which of them are semistable. For instance, contrary to
what happens for an elliptic curve, semistability is not guaranteed by the simplicity
of the sheaf. For E1, that is, a rational curve with one node, this was done in [9] for
the degree zero case and in [10] otherwise. Using the description of indecomposable
torsion-free sheaves on EN given in [5] and the study of semistable torsion-free sheaves
on EN and on tree-like curves of [23], Theorem 2.11 proves that the only degree 0 stable
sheaves that exist are the line bundles having degree 0 on every irreducible component
of X and OCi

(−1) for some irreducible component Ci. Then Corollary 2.13 gives the
possible Jordan-Holder factors of any degree 0 semistable sheaf. In the integral case,
if the sheaf is indecomposable all Jordan-Hölder factors are isomorphic to each other.
This is no longer the case for cycles of projective lines. Proposition 2.16 computes
the graded object of any indecomposable semistable sheaf of degree 0. The structure
of the connected component of the moduli space that contains vector bundles of rank
r is given in Theorem 2.20. Namely, it is isomorphic to the r-th symmetric product
SymrE1 of the rational curve with one node. Having studied the case of degree zero,
the results of the first part of the paper allow to cover other cases (see Remark 2.21). In
particular, the connected component of the moduli space that contains vector bundles
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of rank r and degree rh, where h is the degree of the polarization, is also isomorphic
to SymrE1.

In this paper, scheme means separated scheme of finite type over an algebraically
closed field k of characteristic zero. By a Gorenstein or a Cohen-Macaulay morphism,
we understand a flat morphism of schemes whose fibers are respectively Gorenstein
or Cohen-Macaulay. For any scheme X we denote by D(X) the derived category
of complexes of OX-modules with quasi-coherent cohomology sheaves. This is the
essential image of the derived category of quasi-coherent sheaves in the derived category
D(Mod(X)) of all OX-modules [6, Corollary 5.5]. Analogously D+(X), D−(X) and
Db(X) denote the derived categories of complexes which are respectively bounded
below, bounded above and bounded on both sides, and have quasi-coherent cohomology
sheaves. The subscript c will refer to the corresponding subcategories of complexes
with coherent cohomology sheaves. By a point we always mean a closed point. As it
is usual, if x ∈ X is a point, Ox denotes the skyscraper sheaf of length 1 at x, that
is, the structure sheaf of x as a closed subscheme of X, while the stalk of OX at x is
denoted OX,x.

Acknowledgements. We thank I. Burban for pointing out a mistake in the first ver-
sion of this paper and for showing us the example of a simple not WIT sheaf described
in Remark 1.17. We also thank C.S. Seshadri for drawing to our attention Strickland’s
result [35] which implies Lemma 2.19, and U.N. Bhosle for pointing out some inaccu-
racies and mistakes. We are also very grateful to the anonymous referee for comments
and suggestions that helped us to improve the paper. The second and the third author
would like to thank respectively the Warwick Mathematics Institute and the Mathe-
matical Institute of Oxford for hospitality and very stimulating atmosphere whilst this
paper was written.

1. Fourier-Mukai transforms preserving stability

1.1. A non-trivial Fourier-Mukai transform on genus one curves. Let X and
Y be proper schemes. We denote the two projections of the direct product X × Y to
X and Y by πX and πY .

Let K• be an object in Db
c(X × Y ). The integral functor of kernel K• is the functor

ΦK
•

X→Y : D(X)→ D(Y ) defined as

ΦK
•

X→Y (F •) = RπY ∗(π
∗
XF •

L
⊗K•)

and it maps D−(X) to D−(Y ).
In order to determine whether an integral functor maps bounded complexes to

bounded complexes, the following notion was introduced in [19].

Definition 1.1. Let f : Z → T be a morphism of schemes. An object E• in Db
c(Z) is

said to be of finite homological dimension over T if E•
L
⊗Lf ∗G• is bounded for any G•

in Db
c(T ).

The proof of the following lemma can also be found in [20, Proposition 2.7].

Lemma 1.2. Assume that X is a projective scheme and let K• be an object in Db
c(X×

Y ). The functor ΦK
•

X→Y maps Db
c(X) to Db

c(Y ) if and only if K• has finite homological
dimension over X. �
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Let us suppose that X is a projective Gorenstein curve with arithmetic genus
dimH1(X,OX) = 1 such that its dualizing sheaf is trivial. This includes all the
so-called Kodaria fibers, that is, all singular fibers of a smooth elliptic surface over the
complex numbers (classified by Kodaira in [22]) and of a smooth elliptic threefold over
a base field of characteristic different from 2 and 3 (classified by Miranda in [25]). In
these two cases, all fibers are plane curves. Here, we do not need to assume that our
curve X is a plane curve. Notice also that an irreducible curve of arithmetic genus
one has always trivial dualizing sheaf, but this is no longer true for reducible curves.
Therefore in [19] we defined a genus one fibration as a projective Gorenstein morphism
p : S → B whose fibers have arithmetic genus one and trivial dualizing sheaf.

Using the theory of spherical objects by Seidel and Thomas [30], we have the following

Proposition 1.3. Let X be a projective Gorenstein curve with arithmetic genus 1 and
trivial dualizing sheaf. Let I∆ be the ideal sheaf of the diagonal immersion δ : X ↪→
X ×X. One has:

(1) The ideal sheaf I∆ is an object in Db
c(X ×X) of finite homological dimension

over both factors.
(2) The functor Φ = ΦI∆X→X : Db

c(X)→ Db
c(X) is an equivalence of categories.

(3) The integral functor Φ̂ = Φ
I∗∆
X→X : Db

c(X)→ Db
c(X) where I∗∆ is the dual sheaf is

a shift of the quasi-inverse of Φ with Φ̂ ◦ Φ ' [−1] and Φ ◦ Φ̂ ' [−1].

Proof. (1) Denote by πi : X × X → X with i = 1, 2 the two projections. By the
symmetry, to see that I∆ is of finite homological dimension over both factors it is
enough to prove it over the first one. Using the exact sequence

0→ I∆ → OX×X → δ∗OX → 0 ,

it suffices to see that δ∗OX has finite homological dimension over the first factor. We
have then to prove that for any bounded complex F • on X, the complex δ∗OX ⊗ π∗1F •
is also a bounded complex and this follows from the projection formula for δ.

(2) Since X is a projective Gorenstein curve of genus one and trivial dualizing sheaf,
OX is a spherical object of Db

c(X). By [30] the twisted functor TOX
, along the object

OX , is an equivalence of categories. Since Φ ' TOX
[−1], the statement follows.

(3) By [20, Proposition 2.9], the functor Φ
I∨∆[1]

X→X is the right adjoint to Φ where
I∨∆ = RHom•OX×X

(I∆,OX×X) is the dual in the derived category, then it is enough to
prove that I∨∆ is isomorphic to I∗∆, the ordinary dual. Indeed, one has to check that
ExtiOX×X

(I∆,OX×X) = 0 for i ≥ 1. Let us consider the exact sequence

0→ I∆ → OX×X → δ∗OX → 0 .

Taking local homomorphisms in OX×X , we get an exact sequence

0→ OX×X → I∗∆ → Ext1OX×X
(δ∗OX ,OX×X)→ 0

and isomorphisms

Exti−1
OX×X

(I∆,OX×X) ' ExtiOX×X
(δ∗OX ,OX×X) for all i > 1,

which proves our claim because X is Gorenstein. �

We shall use the following notation: for an integral functor Φ: Db
c(X)→ Db

c(X), Φj

denotes the j-th cohomology sheaf of Φ, unless confusion can arise. Remember that a
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sheaf E on X is said to be WITi-Φ if Φ(E) ' Φi(E)[−i]. In this case, we denote the

unique non-zero cohomology sheaf Φi(E) by Ê .
Note that in our particular situation, since I∆ is flat over the first factor and the

fibers of π2 are of dimension one, for any sheaf E on X one has Φj(E) = 0 unless
0 ≤ j ≤ 1.

We now collect some well-known properties about WIT sheaves.

Proposition 1.4. The following results hold:

(1) There exists a Mukai spectral sequence

Ep,q
2 = Φ̂p(Φq(E)) =⇒

{
E if p+ q = 1

0 otherwise .

(2) Let E be a WITi-Φ sheaf on X. Then Ê is a WIT1−i-Φ̂ sheaf on X and
̂̂E = E .

(3) For every sheaf E on X, the sheaf Φ0(E) is WIT1-Φ̂, while the sheaf Φ1(E) is

WIT0-Φ̂.
(4) There exists a short exact sequence

0 −→ Φ̂1(Φ0(E)) −→ E −→ Φ̂0(Φ1(E)) −→ 0 .

Proof. (1) and (2) follow from [2, Eq. 2.35 and Prop. 2.34]. (3) is a direct consequence
of (1) and (4) is the exact sequence of lower terms of the Mukai spectral sequence. �

1.2. Preservation of the absolute stability for some equivalences.

1.2.1. Pure sheaves and Simpson stability. A notion of stability and semistability for
pure sheaves on a projective scheme with respect to an ample divisor was given by
Simpson in [34]. He also proved the existence of the corresponding moduli spaces.

Let X be a projective scheme of dimension n over an algebraically closed field k of
characteristic zero and fix H a polarization, that is, an ample divisor on X. For any
coherent sheaf E on X, denote E(sH) = E ⊗ OX(sH).

The Hilbert polynomial of E with respect to H is defined to be the unique polynomial
PE(s) ∈ Q[s] given by

PE(s) = h0(X, E(sH)) for all s� 0 .

This polynomial has the form

PE(s) =
r(E)

m!
sm +

d(E)

(m− 1)!
sm−1 + . . .

where r(E) ≥ 0 and d(E) are integer numbers and its degree m ≤ n is equal to the
dimension of the support of E .

Definition 1.5. A coherent sheaf E is pure of dimension m if the support of E has
dimension m and the support of any nonzero subsheaf 0 → F → E has dimension m
as well.

When X is integral, pure sheaves of dimension n are precisely torsion-free sheaves.
We can then adopt the following definition.

Definition 1.6. A coherent sheaf E on X is torsion-free if it is pure of dimension
n = dimX, and it is a torsion sheaf if the dimension of its support is m < n.
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When X is a projective curve with a fixed polarization H, the Hilbert polynomial
of a coherent sheaf E on X is then

PE(s) = r(E)s+ d(E) ∈ Z[s],

a polynomial with integer coefficients and at most of degree one. It is constant precisely
for torsion sheaves.

The (Simpson) slope of E is defined as

µS(E) =
d(E)

r(E)
.

This is a rational number if r(E) 6= 0 and it is equal to infinity for torsion sheaves. It
allows us to define (Simpson) µ-stability and µ-semistability for pure sheaves as usual.

Definition 1.7. A sheaf E on X is (Simpson) µS-stable (resp. µS-semistable) with
respect to H, if it is pure and for every proper subsheaf F ↪→ E one has µS(F) < µS(E)
(resp. µS(F) ≤ µS(E)).

With these definitions any torsion sheaf on X is µS-semistable and it is µS-stable if
and only if it has no proper subsheaves, that is, it is isomorphic to Ox, the structure
sheaf of a point x ∈ X. As a particular case of Simpson’s work [34], we have the
following existence result. Fixing a polynomial P (s) = rs+d ∈ Z[s], and a polarization
H on X, if the class of µS-semistable sheaves on X, with respect to H, with Hilbert
polynomial equal to P is non-empty, then it has a coarse moduli spaceMX(r, d) which
is a projective scheme over k. Rational points ofMX(r, d) correspond to S-equivalence
classes of µS-semistable sheaves with Hilbert polynomial P (t) = rt+ d.

Remark 1.8. When X is an integral curve and E is a coherent sheaf on it, one has
classical notions of rank of E , as the rank at the generic point of X, and degree of E , as
χ(E)− rk(E)χ(OX). The Riemann-Roch theorem gives us what is the relation between
the coefficients of the Hilbert polynomial and the usual rank and degree of E , namely

r(E) = deg(X) · rk(E)

d(E) = deg(E) + rk(E) · χ(OX)

where deg(X) is the degree of X defined in terms of the polarization H. In this case, the
Simpson notions of µS-stability and µS-semistability are equivalent to the usual ones
for torsion-free sheaves. Thus, for integral curves µS-semistability does not depend
on the polarization. This is no longer true for non-integral curves (see [23] for more
details). 4
1.2.2. Invariants of the transforms and the WIT condition. In the rest of this section
we will assume that X is a projective Gorenstein curve of arithmetic genus 1 with
trivial dualizing sheaf and H is a fixed polarization on it of degree h.

Since the curve X may be a singular curve, we will work with the Hilbert polyno-
mial of a sheaf instead of its Chern characters that might not be defined. The following
proposition computes the Hilbert polynomial of the transform of E by the equivalences

Φ and Φ̂ of the previous subsection and by Ψ = Φ
δ∗OX(H)
X→X and Ψ̂ = Φ

δ∗OX(−H)
X→X . Re-

member that for a bounded complex F •, the Euler characteristic is defined to be the
alternate sum

χ(F •) =
∑
i

(−1)iχ(Hi(F •)) .

and the Hilbert polynomial is by definition PF•(s) = χ(F •(sH)).
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Proposition 1.9. Let E be a sheaf on X with Hilbert polynomial PE(s) = rs+d. Then

(1) The Hilbert polynomial of the complex Φ(E) (resp. Φ̂(E)) is equal to (dh−r)s−d
(resp. (dh+ r)s+ d).

(2) The Hilbert polynomial of the sheaf Ψ(E) (resp. Ψ̂(E)) is equal to rs + d + r
(resp. rs+ d− r).

Proof. (1) Denote O = OX×X and consider the exact sequence

0→ I∆ → O → δ∗OX → 0 .

In the derived category Db
c(X), this induces an exact triangle

(1.1) Φ(E)→ ΦOX→X(E)→ E → Φ(E)[1]

for any sheaf E on X. Since the Euler characteristic is additive for exact triangles in
the derived category, the Hilbert polynomial of the complex Φ(E) is equal to

χ(ΦOX→X(E)(sH))− (rs+ d) .

If p : X → Spec k is the projection of X onto a point and πi : X ×X → X are the
natural projections, the base-change formula for the diagram

X ×X
π1 //

π2

��

X

p

��
X p

// Spec k

shows that

(1.2) ΦOX→X(E) = Rπ2∗(π
∗
1E) ' p∗Rp∗(E) ' p∗RΓ(X, E) = RΓ(X, E)⊗k OX .

Then χ(ΦOX→X(E)(sH)) = χ(RΓ(X, E) ⊗k OX(sH)) = χ(E)χ(OX(sH)) = d(sh), and

the result follows. The Hilbert polynomial of Φ̂(E) is computed using that Φ◦Φ̂ ' [−1].

(2) Since the equivalence Ψ (resp. Ψ̂) is given by twisting by the line bundle OX(H)
(resp. OX(−H)), this part is immediate. �

Remark 1.10. Notice that if L is an arbitrary line bundle on X, the second coefficient
of the Hilbert polynomial of the transform Φδ∗L

X→X(E) is not in general a linear function
of the coefficients r and d (see Example 2.2). 4

Any sheaf E on X is WIT0-Ψ and WIT0-Ψ̂. In order to prove the preservation of
stability under the equivalence of Db

c(X) defined by the ideal of the diagonal I∆, we
shall need a description of semistable sheaves WITi with respect to the Fourier-Mukai

transforms Φ and Φ̂.

Corollary 1.11. Let E be a non-zero sheaf on X.

(1) If E is WIT0-Φ, then µS(E) > 1/h.
(2) If E is WIT1-Φ, then µS(E) ≤ 1/h.

(3) If E is WIT0-Φ̂, then µS(E) > −1/h.

(4) If E is WIT1-Φ̂, then µS(E) ≤ −1/h

Proof. Let PE(s) = rs+d the Hilbert polynomial of E . By Proposition 1.9, the Hilbert
polynomial of Φ(E) is PΦ(E)(s) = (dh − r)s − d. Suppose that E is WIT0-Φ. Then

Ê = Φ(E) and dh ≥ r. If dh = r, the transform Ê is a torsion sheaf of length
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−d = −r/h ≤ 0 and thus it is equal to zero. But this is absurd because E is non-zero.

The second statement follows straightforwardly and the proof for Φ̂ is similar. �

Remark 1.12. The following easy properties will be used in the rest of the section:

(1) Torsion sheaves on X are WIT0 with respect to both equivalences Φ and Φ̂.
(2) If a sheaf E is WIT1 with Hilbert polynomial PE(s) = rs+ d, then r 6= 0.

4

Proposition 1.13. If E is a µS-semistable sheaf on X, then

(1) E is WIT0-Φ if and only if µS(E) > 1/h.
(2) E is WIT1-Φ if and only if µS(E) ≤ 1/h.

Proof. If E is a torsion sheaf, the result follows from Remark 1.12. Suppose then that
E is torsion-free and consider the short exact sequence

0 −→ Φ̂1(Φ0(E)) −→ E −→ Φ̂0(Φ1(E)) −→ 0 .

(1) The direct implication is given by Corollary 1.11. Let us prove the converse. If

µS(E) > 1/h and E is not WIT0-Φ, by the above exact sequence Φ̂0(Φ1(E)) is a non-zero

quotient of E and WIT1-Φ. By Corollary 1.11, its slope is µS(Φ̂0(Φ1(E))) ≤ 1/h and

consequently, µS(Φ̂1(Φ0(E))) > µS(E). This contradicts the semistability of E . Thus,
E is WIT0-Φ.

(2) The direct implication follows again from Corollary 1.11. For the converse we
proceed as before. If µS(E) ≤ 1/h and E is not WIT1-Φ, by the exact sequence

Φ̂1(Φ0(E)) is a non-zero subsheaf of E and WIT0-Φ. By Corollary 1.11, its slope is

µS(Φ̂1(Φ0(E))) > 1/h and this contradicts the semistability of E . Thus, E is WIT1-Φ.
�

There exists a similar result for Φ̂ whose proof is analogous.

Proposition 1.14. If E is a µS-semistable sheaf on X, then

(1) E is WIT0-Φ̂ if and only if µS(E) > −1/h.

(2) E is WIT1-Φ̂ if and only if µS(E) ≤ −1/h.

�

The following simple but useful result is known as the Parseval theorem (see for
instance [2] for a proof).

Proposition 1.15. Let Φ: D(X) → D(Y ) be an exact fully faithful functor, F a
WITi-Φ sheaf and G a WITj-Φ sheaf on X. Then for all k, one has

ExtkX(F ,G) ' Extk+i−j
Y (F̂ , Ĝ)

In particular if F is a simple WIT-Φ sheaf, then the transform F̂ is also simple. �

Proposition 1.16. Let E be a simple (resp. indecomposable) semistable sheaf on X.

Then the transform Ê with respect to both Φ and Φ̂ is also a simple (resp. indecompos-
able) sheaf.

Proof. By Propositions 1.13 and 1.14, E is WIT with respect to both Φ and Φ̂. Then

Ê is indecomposable when E is so. Moreover, if E is simple, Ê is simple by the Parseval
formula (Proposition 1.15). �
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1.2.3. Preservation of (semi)stability. If X is an irreducible curve of arithmetic genus
one, the group of exact auto-equivalences of its derived category Db

c(X) is described
in [10]. As it happens for the smooth case, this group is generated by the trivial
equivalences (twists by line bundles on X, automorphisms of X and the shift functor
[1]) together with the Fourier-Mukai transform Φ whose kernel is the ideal of the
diagonal. Then, taking into account that on integral curves tensoring by line bundles
preserves trivially the (semi)stability of sheaves, the fact that the non-trivial Fourier-
Mukai functor Φ transforms (semi)stable sheaves into (semi)stable sheaves (up to shift)
and stable sheaves into stable ones (also up to shift) (cf. [2]) ensures that any auto-
equivalence of the derived category Db

c(X) preserves stability.
However, this is no longer true for non-irreducible curves. Actually, if X is a non-

irreducible curve, there are examples of equivalences of Db
c(X) that do not preserve

semistability, and we can find examples of such equivalences among those of the most
simple type, namely, among the equivalences Φδ∗L

X→X consisting of twisting by a line
bundle L.

Consider, for instance, a curve X of type E2, that is, two rational curves meeting
transversally at two points (cf. Figure 1).

I
M 2

P

Q

Figure 1. The curve E2

Take a line bundle L on X which has degree 2 in one irreducible component and
degree −2 in the other one. From Propositions 6.2 and 6.3 in [23], OX is a stable sheaf
but L is not even semistable. Then twisting by L is a Fourier-Mukai transform which
does not preserve semistability.

Remark 1.17. A straightforward computation shows that both H0(X,L) and H1(X,L)
are one dimensional vector spaces. Using Equations (1.1) and (1.2) we deduce that Φ(E)
is a complex with two nonzero cohomology sheaves. This proves that simple (unstable)
sheaves on X may fail to be WIT. 4

Thus it is important to characterize the auto-equivalences of Db
c(X) which preserve

stability on a non-irreducible curve X of arithmetic genus 1. This seems to be a difficult
task, and here we just provide non-trivial instances of such equivalences.

To begin with, note that twisting by the ample sheaf OX(H) trivially preserves

stability, that is, the transform of a µS-(semi)stable sheaf by the equivalences Ψ or Ψ̂
is again µS-(semi)stable (cf. Proposition 1.9).

In this section we prove that the non-trivial Fourier-Mukai functors Φ and Φ̂ preserve
semistability as well.

Lemma 1.18. Let E be a sheaf on X with Hilbert polynomial PE(s) = dhs+d and d > 0.
Then E is WIT1-Φ if and only if E is a torsion free µS-semistable sheaf. Analogously

if PE(s) = dhs − d with d > 0, then E is WIT1-Φ̂ if and only if E is a torsion free
µS-semistable sheaf.
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Proof. If E is WIT1-Φ, then any subsheaf is WIT1-Φ as well. Since by Remark 1.12
torsion sheaves are WIT0-Φ, this proves that E is torsion-free. Moreover, if F ↪→ E is
a subsheaf, by Corollary 1.11, µS(F) ≤ 1/h = µS(E), so that E is µS-semistable. The

converse is part of Proposition 1.13. The proof for Φ̂ is similar. �

Proposition 1.19. Let T a non-zero torsion sheaf on X. Then the transform T̂ with

respect to both equivalences Φ and Φ̂ is a torsion-free µS-semistable sheaf.

Proof. Since T is a torsion sheaf, T is WIT0-Φ and its Hilbert polynomial is PT (s) = d

with d > 0. The transform T̂ is WIT1-Φ̂ and, by Proposition 1.9, its Hilbert polynomial

is PT̂ (s) = dhs− d. We conclude by Lemma 1.18. The proof for Φ̂ is the same. �

We state now the result that ensures the preservation of semistability under the

Fourier-Mukai transforms Φ and Φ̂.

Theorem 1.20. Let X be a projective Gorenstein curve of arithmetic genus one and
trivial dualizing sheaf. Fix a polarization H on X. Let E be a pure dimensional sheaf

on X. If E is µS-semistable with respect to H, then its transform Ê with respect to both

equivalences Φ and Φ̂ is also µS-semistable with respect to H.

Proof. Let PE(s) = rs + d be the Hilbert polynomial of E with respect to the fixed
polarization H and, as before, denote by h the degree of H. If r = 0, the result is
proved in Proposition 1.19, so that we can assume that E is a torsion-free sheaf. Let
us distinguish the following cases:

(1) If dh = r, Ê is a torsion sheaf and thus semistable.

(2) Suppose now that dh > r. By Proposition 1.13, E is WIT0-Φ, so that Ê is

WIT1-Φ̂. The same argument as in Lemma 1.18 shows that Ê is torsion-free. If Ê is
not µS-semistable, there is an exact sequence

0 −→ F −→ Ê −→ G −→ 0 ,

with µS(G) < µS(Ê) < µS(F). Moreover, the existence of Harder-Narasimhan fil-

trations allows us to assume that G is a torsion-free µS-semistable sheaf. Since Ê is

torsion-free and WIT1-Φ̂, by Proposition 1.13 µS(Ê) < −1/h where the last inequality
is strict because E is torsion-free. Then G is a µS-semistable sheaf with µS(G) < −1/h,

so that G is WIT1-Φ̂ by Proposition 1.14. By applying the inverse Fourier-Mukai

transform one obtains that F is WIT1-Φ̂ as well and that there is an exact sequence

0 −→ F̂ −→ E −→ Ĝ −→ 0 .

Since E is torsion-free, one has r(F̂) 6= 0 and 1/h < µS(F̂) ≤ µS(E) where the first

inequality is due to the fact that F̂ is WIT0-Φ and the second is by the µS-semistability
of E . Since

µS(Ê) =
µS(E)

1− hµS(E)
and µS(F) =

µS(F̂)

1− hµS(F̂)
,

one obtains µS(F) ≤ µS(Ê); this contradicts µS(F) > µS(Ê).

(3) Suppose finally that dh < r. Let us prove that Ê is a torsion-free sheaf. Indeed,

a torsion subsheaf T 6= 0 of Ê should necessary be WIT0-Φ̂ and µS(T̂ ) = 1/h. By
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applying Φ̂ we obtain T̂ ↪→ E which contradicts the µS-semistability of E . If Ê is not
µS-semistable, as in the previous case we can assume the existence of an exact sequence

0 −→ F −→ Ê −→ G −→ 0

with F torsion-free, G WIT0-Φ̂ and µS(F) > µS(Ê) > µS(G). Moreover Ê is WIT0-Φ̂,

so that µS(F) > µS(Ê) > −1/h. Then F is WIT0-Φ̂, by Proposition 1.14. Applying
the inverse Fourier-Mukai transform we get the exact sequence

0 −→ F̂ −→ E −→ Ĝ −→ 0 .

Since µS(F) > µS(Ê) > −1/h we obtain

µS(F̂) =
µS(F)

1 + hµS(F)
>

µS(Ê)

1 + hµS(Ê)
= µS(E) ,

but this contradicts the fact that E is µS-semistable.

An analogous discussion proves the result for the Fourier-Mukai transform Φ̂. �

The proof of the theorem implies the following consequences

Corollary 1.21. Let Ê be the transform of a µS-semistable sheaf E with respect to Φ

(resp. Φ̂). The following holds

(1) If E is a torsion-free sheaf and µS(E) 6= 1/h (resp. −1/h), then Ê is also
torsion-free.

(2) If µS(E) 6= 1/h (resp. −1/h) and E is µS-stable, then Ê is µS-stable as well.

(3) If µS(E) = 1/h (resp. −1/h), then Ê is µS-stable if and only if d = 1.

�

Remark 1.22. Note that if E is semistable with µS(E) = 1/h, Ê is a torsion sheaf

and, even when the sheaf E is stable, we can only ensure the stability of Ê for d = 1.

When d > 1, if E is indecomposable (for instance, if it is stable), the transform Ê is
a torsion sheaf and it is indecomposable by Proposition 1.16; thus it is supported at

a single point x ∈ X. If x is a smooth point, then Ê ' OX,x/md
x. The structure of

torsion sheaves supported at a singular point is much more complicated (see [9] for

more details). Nevertheless, if Ê is supported at a possibly singular point x, one can

see by induction on the length d that Ê is always S-equivalent to ⊕dOx. 4

Since the transform Ôx = Φ(Ox) is the ideal sheaf mx of the point x, and Φ̂(Ox) =
m∗x, we deduce the following stability result.

Corollary 1.23. If X is a polarized Gorenstein curve of arithmetic genus one and
trivial dualizing sheaf, then the maximal ideal mx for any point x ∈ X and its dual m∗x
are stable sheaves.

Remark 1.24. When X is irreducible, this is a trivial fact. For Gorenstein reducible
curves of arithmetic genus bigger or equal than 2, the semistability of mx for an arbi-
trary point x of X has been recently proved in [13] using different techniques. 4

The equivalences Φ and Ψ define scheme isomorphisms between the corresponding
moduli spaces:

Corollary 1.25. Let (r, d) be a pair of integers with r ≥ 0.
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(1) The Fourier-Mukai functors Φ and Ψ induce scheme isomorphisms of moduli
spaces

MX(r, d) 'MX(dh− r,−d) for d/r > 1/h,

MX(r, d) 'MX(−dh+ r, d) for d/r ≤ 1/h, and

MX(r, d) 'MX(r, d+ r) .

(2) The moduli spaceMX(r, d) is isomorphic either toMX(0, d0) ' Symd0(X) with
d0 > 0, or to MX(r0, 0) with r0 > 0 or to MX(r0, d0) with 2r0/h ≤ d0 < r0.

Proof. For the first part see for instance [2, Corollary 2.65]. Let us prove the second
one. By Remark 1.22 and arguing as in the proof of [2, Corollary 3.33], one proves
that MX(0, d) ' Symd(X). Consider the family B of all pairs of integers (r′, d′) with
r′ ≥ 0 that are related with (r, d) by the isomorphisms in (1). Take (r0, d0) in B such
that r0 ≥ 0 is the minimum r′ among the pairs in B. If r0 = 0, then d0 > 0 and
MX(r, d) ' MX(0, d0). Assume then that r0 > 0. Since by applying the equivalence

Ψ it is possible to increase d and by applying Ψ̂ to decrease it, if one considers now C
as the family of all pairs in B with r′ = r0, one can choose d0 as the minimum d′ among
pairs in C such that 0 ≤ d0 < r0. If d0 = 0, thenMX(r, d) ≡MX(r0, 0). If d0 > 0, we
claim that all the sheaves inMX(r0, d0) are WIT0-Φ. Indeed, otherwise r0 ≤ r0 − d0h
by the choice of r0 and then d0 < 0 which contradicts our choice of d0. Then, it has to
be r0 ≤ d0h− r0 so that 2r0/h ≤ d0 < r0 and the proof is complete. �

Remark 1.26. Notice that if X has only two irreducible components, as it happens for
the Kodaira fibers E2 (cf. Figure 1) and III, and the polarization H has degree h = 2,
Corollary 1.25 reduces the study of the moduli spacesMX(r, d) just to the case d = 0.
Some results in this case can be found in the next section. 4

Remark 1.27. If X is irreducible, we can take h = 1, so that r and d are the usual
rank and degree. In this situation, the last case in (2) of Corollary 1.25 does not occur;
moreover, there is an isomorphismM(r0, 0) 'MX(0, r0). We get then thatM(r, d) '
Symr0(X). Using the transforms Φ and Ψ and the Euclid algorithm, one can see that
r0 = gcd(r, d), as proven in [2, Chapter 6] by generalizing an argument described
for smooth elliptic curves by Bridgeland [7] and Polishchuk [29]. A consequence is
that there are no stable sheaves on X if gcd(r, d) > 1. As already mentioned in the
introduction, a complete description of these moduli spaces can be found in [2, Chapter
6]. 4

1.3. Relative moduli spaces. Let p : S → B a genus one fibration, that is, a projec-
tive Gorenstein morphism whose fibers are curves of arithmetic genus one and trivial
dualizing sheaf but without further assumptions on S, B or the fibers; in particular,
non-reduced fibers are allowed. Consider the relative integral functor

Φ = ΦI∆S→S : Db
c(S)→ Db

c(S) ,

with kernel the ideal sheaf I∆ of the relative diagonal immersion δ : S ↪→ S ×B S. By
[20, Proposition 2.16], it is an equivalence of categories.

Fix a relative polarization H on the fibers of p and denote p̂ : MS/B(r, d) → B the
relative coarse moduli space of µS-semistable sheaves on the fibers (with respect to the
induced polarization) that have Hilbert polynomial P (s) = rs + d. Closed points of
the fiber p̂−1(b) = MSb

(r, d) represent S-equivalence classes of µS-semistable sheaves
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on the fiber Sb with Hilbert polynomial P (s) = rs + d. Denote also Ψ the relative
auto-equivalence of Db

c(S) given by twisting by the line bundle OS/B(H).
Taking into account [2, Corollary 6.3] and Corollary 1.25, we get:

Corollary 1.28. Let (r, d) be a pair of integers with r ≥ 0.

(1) The Fourier-Mukai functors Φ and Ψ induce scheme isomorphisms of moduli
spaces

MS/B(r, d) 'MS/B(dh− r,−d) for d/r > 1/h,

MS/B(r, d) 'MS/B(−dh+ r, d) for d/r ≤ 1/h, and

MS/B(r, d) 'MS/B(r, d+ r) .

(2) The moduli spaceMS/B(r, d) is isomorphic either toMS/B(0, d0) ' Symd0(S/B)
with d0 > 0, or to MS/B(r0, 0) with r0 > 0 or to MS/B(r0, d0) with 2r0/h ≤
d0 < r0.

�

2. Moduli spaces of degree zero sheaves for EN

In this section, we give a description of the connected component of the moduli
space MX(r, 0) with r > 0 containing vector bundles when X is a curve of type EN ,
that is, a cycle of N projective lines (cf. Figure 2). The description is achieved by
combining two different ingredients; the first one is the description of indecomposable
torsion-free sheaves on cycles EN given in [14, 5], and the second one is the description
of (semi)stable line bundles on tree-like curves and cycles carried out by one of the
authors in [24, 23]. I

N

Figure 2. The curve E6

2.1. Coherent sheaves on reducible curves. We collect some results about coher-
ent sheaves on reducible curves. Let X be any projective connected and reduced curve
over an algebraically closed field k. Denote by C1, . . . , CN the irreducible components
of X and by x1, . . . , xk the intersection points of C1, . . . , CN . Let E a coherent sheaf
on X and denote ECi

= (E ⊗ OCi
)/torsion its restriction to Ci modulo torsion. Let

ri = ri(E) and di = di(E) be the rank and the degree of ECi
.

Definition 2.1. The multirank and multidegree of a coherent sheaf E on X are the
N -tuples r(E) = (r1, . . . , rN) and d(E) = (d1, . . . , dN).

Let H be a polarization on X of degree h and denote by hi the degree of H on Ci.
As in [31], for any pure dimension one sheaf E on X, there is an exact sequence

(2.1) 0→ E → EC1 ⊕ · · · ⊕ ECN
→ T → 0 ,
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where T is a torsion sheaf whose support is contained in the set {x1, . . . , xk}. The
first arrow in the sequence (2.1) is the composition of the canonical morphisms E →
π∗(π

∗E)→ π∗(π
∗E/tors), where π is the normalization morphism of X.

Let PE(s) = rs + d be the Hilbert polynomial of E with respect to H. Since the
Hilbert polynomial is additive, from the above exact sequence, one obtains that

r = r1h1 + · · ·+ rNhN .

Hence, there is a natural decomposition

(2.2) MX(r, d) =
∐
r∈ZN

MX(r, d)

where MX(r, d) is the moduli space of those semistable sheaves E on X of multirank
r and the union runs over all N -tuples r = (r1, . . . , rN) of non-negative integers such
that r = r1h1 + · · ·+ rNhN .

This decomposition becomes necessary in the analysis of some moduli spacesMX(r, d)
because, as it was mentioned in Remark 1.10, if Γ is an equivalence of Db

c(X) and E is a
WIT-Γ sheaf, it is not true in general that the coefficients of the Hilbert polynomial of
Γ(E) are linear functions of the coefficients of the Hilbert polynomial of E . This means
that the action of an arbitrary equivalence of Db

c(X) does not send all connected com-
ponents of the moduli space MX(r, d) into the same moduli space MX(r′, d′). Here
we have an example of this fact.

Example 2.2. Let X be a curve of type E2, that is, two rational curves C1 and C2

meeting transversally at two points with a polarization H such that h1 = h2 = 1
(Figure 1). Let L be a line bundle on X with multidegree d(L) = (d1, d2) with d1 6= d2

and take Γ = Φδ∗L
X→X the equivalence defined by twisting by L. If E is a coherent sheaf

on X with Hilbert polynomial PE(s) = rs+d and multirank r(E) = (r1, r2), the Hilbert
polynomial of Γ(E) is equal to rs+ d+ (r1d1 + r2d2). Thus, the connected component
MX((r, 0), d) ⊆MX(r, d) is sent by Γ into the moduli spaceMX(r, d+ rd1) while the
component MX((0, r), d) is mapped into M(r, d+ rd2).

The following proposition provides better invariants. If K(Db
c(X)) denotes the

Grothendieck group of the triangulated category Db
c(X) (cf. [17]), one has K(Db

c(X)) '
K(Coh(X)) and this group is usually denoted K•(X).

Proposition 2.3. Let X be any reduced connected and projective curve. If every
irreducible component of X is isomorphic to P1 the projective line, then there is an
isomorphism K•(X) ' ZN+1 where N is the number of irreducible components of X.
Moreover the above isomorphism is defined by sending the class of any coherent sheaf
[E ] in K•(X) to (r(E), χ(E)) ∈ ZN+1.

Proof. Let us denote by C1, . . . , CN the irreducible components of the curve X. Since
the curve is connected and its irreducible components are isomorphic to P1 we conclude
that any two points are rationally equivalent, that is A0(X) = Z[x], where [x] is the
class of a point of X. On the other hand it is well known [16, Example 1.3.2] that
the n-th Chow group of an n-dimensional scheme is the free abelian group on its n-
dimensional irreducible components, therefore A1 = Z[C1]⊕ · · · ⊕ Z[CN ].

The normalization π : X̃ → X is a Chow envelope of X, thus π∗ : K•(X̃) → K•(X)

is surjective [16, Lemma 18.3]. Since X̃ = C̃1

∐
· · ·

∐
C̃N one has

K•(X̃) ' K•(C̃1)⊕ · · · ⊕K•(C̃N).
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Taking into account that C̃i ' P1 we get K•(X̃) =
⊕N

i=1 Z[OC̃i
]⊕Z[Ox̃i

], where x̃i ∈ C̃i.
Given any two points x̃i, ỹi in C̃i ' P1 we know that [Ox̃i

] = [Oỹi
]. Therefore, since X

is connected, the surjectivity of π∗ implies that K•(X) is generated by

[OC1 ], . . . , [OCN
], [Ox].

By the Riemann-Roch theorem for algebraic schemes [16, Theorem 18.3] there is a
homomorphism τX : K•(X)→ A•(X)⊗Z Q with the following properties:

(1) For any k-dimensional closed subvariety Y of X, one has τX([OY ]) = [Y ] +
terms of dimension < k,

(2) (τX)Q : K•(X)⊗Z Q ∼−→ A•(X)⊗Z Q is an isomorphism.

Using the first property one easily sees that {τX([OC1 ]), . . . , τX([OCN
]), τX([Ox])} is a

basis of A•(X)⊗Z Q. Taking into account that {[OC1 ], . . . , [OCN
], [Ox]} is a system of

generators of K•(X), the second property of τX implies that it is also a basis.
The final statement follows now straightforwardly by applying the integer valued

mapping (r(−), χ(−)) to the basis of K•(X) above constructed. �

All the functions defining the isomorphism of Proposition 2.3, that is, the ranks ri
and the Euler characteristic χ, are additive on exact triangles of Db

c(X). Hence, any
equivalence Γ of Db

c(X) induces a group automorphism γ of K•(X), such that there is
a commutative square

Db
c(X)

Γ //

��

Db
c(X)

��
K•(X)

γ // K•(X)

where the vertical arrows are the natural ones.
Note that if E is a vector bundle on X, then

∑N
i=1 di = d. Thus, the category of vector

bundles on X of rank r and degree d (whose Hilbert polynomial is PE(s) = rhs + d)
decomposes as

VBX(r, d) '
∐
d∈ZN

VBX(r, d) ,

where now the union runs over all d = (d1, . . . , dN) ∈ ZN such that
∑N

i=1 di = d.

However, since for non-locally free sheaves it is not true that
∑N

i=1 di = d, there is not
a similar decomposition for the moduli space MX(r, d).

To finish this subsection, let us show how µS-semistability behaves under direct and
inverse images by Galois coverings of reducible curves. For non-singular projective and
irreducible varieties, similar results were proved by Takemoto in [36].

Lemma 2.4. Let X be a projective connected and reduced curve whose irreducible
components are smooth. Let H be a polarization on X and let f : Y → X be an ètale
Galois covering of degree n where Y is also connected.

(1) If E is a torsion-free sheaf on X such that f ∗E is µS-semistable with respect to
f ∗H, then E is µS-semistable with respect to H.

(2) A torsion-free sheaf F on Y is µS-semistable with respect to f ∗H if and only if
f∗(F) is µS-semistable with respect to H.
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Proof. (1) By (2.1), if C1, . . . , CN are the irreducible components of X, there is an
exact sequence

0→ E → EC1 ⊕ · · · ⊕ ECN
→ T → 0 ,

where ECi
is a vector bundle on Ci for all i and T is a torsion sheaf. Because Ci is

smooth, one has that Pf∗ECi
(s) = nPECi

(s). Moreover, since f is flat,

0→ f ∗E → f ∗EC1 ⊕ · · · ⊕ f ∗ECr → f ∗T → 0

is also an exact sequence. Then the additivity of the Hilbert polynomial allow us
to conclude that Pf∗E(s) = nPE(s) where both polynomials are computed with the
corresponding polarizations. Hence

(2.3) µS(f ∗E) = µS(E)

and the result follows.
(2) By (1), to prove the direct implication it suffices to prove that f ∗f∗(F) is

semistable with respect to f ∗H. Since any Galois ètale covering with X and Y con-
nected is trivialized by itself, f ∗f∗(F) = ⊕ρ∗F where ρ runs over the Galois group of
f . Then the result follows because any extension of two µS-semistable sheaves with the
same slope is µS-semistable as well. The converse is true for any finite morphism. �

It is important to remark that Equation (2.3) is true because we are considering the
Simpson’s slope and not the usual slope, defined for a torsion-free sheaf as the quotient
obtained by dividing the degree by the rank. For smooth varieties, it is a well-known
fact (cf. [36]) that if f is an unramified covering then the relation between the usual
slopes of E and of f ∗E is given instead by µ(f ∗E) = deg f · µ(E).

2.2. Indecomposable torsion free sheaves on EN . The purpose of this subsection
is just to state some known results about the classification of indecomposable vector
bundles and torsion free sheaves on cycles EN of projective lines that we shall use
later. This classification was obtained for the first time by Drozd and Greuel in [14] for
arbitrary base fields. Nevertheless, for algebraically closed base fields, one can find a
geometric description of indecomposable torsion free sheaves on EN in [5] that follows
the classical description of vector bundles on elliptic curves given by Oda in [28] (see
Theorem 2.6 below) and allows to study which of these sheaves are semistable.

Following the same argument that Atiyah used for smooth elliptic curves and taking
into account that Ext1(OEN

,OEN
) = k, it is possible to inductively prove the following

result.

Lemma 2.5. Let EN be a cycle of N projective lines. For any integer m ≥ 1 there is
a unique indecomposable vector bundle Fm on EN appearing in the exact sequence

0→ Fm−1 → Fm → OEN
→ 0 , F1 = OEN

.

�

Theorem 2.6. [5, Theorem 19] Let EN be a cycle of N projective lines and Ik be a
chain of k projective lines (cf. Figure 3). Let E be an indecomposable torsion free sheaf
on EN . The following holds:

(1) If E is a vector bundle, there is an étale covering πr : ErN → EN , a line bundle
L on ErN and a number m ∈ N such that

E ' πr∗(L ⊗ Fm) .
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The integers r, m are determined by E. Moreover, when r > 1 the multidegree
d(L) of the line bundle L is non-periodic.

(2) If E is not locally free, then there exits a finite map pk : Ik → EN (defined as
the composition of some πr and some closed immersion i : Ik ↪→ ErN) and a
line bundle L on Ik such that E ' pk∗(L).

�

Remember that if d = (d1, . . . , dN , dN+1, . . . , d2N , . . . , d(r−1)N , . . . , drN), then the non-
periodicity means that d 6= d[t] for t = 1, . . . , r − 1 where

d[1] = (dN+1, . . . , d2N , . . . , d(r−1)N , . . . , drN , d1, . . . , dN)

and d[t] = (d[t− 1])[1]. I
N

Figure 3. The curve I4

2.3. Locally free sheaves on cycles.

Proposition 2.7. Let E be a pure dimension one sheaf on EN . Then

N∑
i=1

di(E)− χ(E) ≤ 0 ,

and
∑N

i=1 di(E)− χ(E) = 0 if and only if E is locally free.

Proof. Since the function
∑N

i=1 di(E) − χ(E) is additive over direct sums of sheaves,
we can assume that E is indecomposable. We can then apply Theorem 2.6. If E is
not locally free, then E ' pk∗(L), where L is a line bundle on a chain Ik of projective
lines and pk : Ik → EN is a finite morphism. One has χ(E) = χ(L) = 1 +

∑
D d(LD),

where the sum runs over the irreducible components D of Ik. Moreover
∑

D d(LD) =∑N
i=1 di(E) and then

∑N
i=1 di(E)− χ(E) = −1.

If E is locally free, then E ' πs∗(L⊗Fm) for a finite morphism πs : EsN → EN and a

line bundle L on EsN . Thus χ(E) = χ(L⊗Fm) = mχ(L) = m
∑sN

j=1 d(LDj
), where the

sum runs over the irreducible components Dj of EsN . Thus
∑N

i=1 di(E)−χ(E) = 0. �

Remark 2.8. Proposition 2.7 is not true for the chain IN . For any pure dimension one
sheaf E on IN one has

∑N
i=1 di − χ(E) < 0. 4

2.4. Stable sheaves of degree zero on EN . Let X = EN be as above, a cycle
of projective lines. Suppose now that the number of irreducible components of X is
N ≥ 2. Fix a polarization H on X of degree h and let E be a coherent sheaf on X.
Since χ(OX) = 0, the second coefficient of the Hilbert polynomial, that coincides with
its Euler characteristic χ(E), can be seen in view of Remark 1.8 as its degree. Hence,
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from now on, if the Hilbert polynomial of E is PE(s) = rs, then we will refer to it as a
degree 0 sheaf.

When r = h, the structure of the component MX((1, . . . , 1), 0) ⊂ MX(h, 0) was
determined by one of the authors in [23] and [24]. There, one can find the following
result.

Lemma 2.9. Let E be a pure dimension one sheaf on X of degree 0 and multirank
r(E) = (1, . . . , 1).

(1) The (semi)stability of E does not depend on the polarization.
(2) E is µS-stable if and only if it is a line bundle and its multidegree is d(E) =

(0, . . . , 0).
(3) If E has multirank r(E) = (1, . . . , 1) and is strictly semistable, then its graded

object is Gr(E) ' ⊕Ni=1OCi
(−1), where C1, . . . , CN are the irreducible compo-

nents of X.

Lemma 2.10. Let L be a line bundle on X. For any integer m ≥ 1, the vector bundle
Fm⊗L is µS-semistable if and only if L is µS-semistable. For m > 1, Fm⊗L is never
a µS-stable sheaf.

Proof. Using the exact sequences that define Fm in Lemma 2.5 one gets that PFm⊗L(s) =
mPL(s) so that µS(Fm ⊗ L) = µS(L) for any m ≥ 1. Thus, the statement about the
non-stability Fm ⊗ L for m > 1 is straightforward.

Assume that Fm ⊗ L is µS-semistable. If L is not µS-semistable, by Lemma 3.3
in [23], there exists a proper subcurve Z ⊂ X such that µS(L) > µS(LZ) where LZ
is the restriction of L to Z. Since PFm⊗LZ

(s) = mPLZ
(s), the quotient Fm ⊗ LZ

contradicts the semistability of Fm ⊗ L. The converse is proved by induction on m
taking into account that the category of semistable sheaves of fixed slope is closed
under extensions. �

In analogy to what happens for smooth elliptic curves and irreducible projective
curves of arithmetic genus one, the following theorem proves that there are no stable
degree 0 sheaves of higher rank.

Theorem 2.11. Let X be a polarized curve of type EN with N ≥ 2. Let E be a
sheaf of pure dimension 1 on X with Hilbert polynomial PE(s) = rs and multirank
r(E) = (r1, . . . , rN). If E is µS-stable, then either it is isomorphic to OCi

(−1) for some
i = 1, . . . , N or it is a locally free sheaf with multirank r(E) = (1, . . . , 1) and multidegree
d = (0, . . . , 0).

Proof. Assume that E is not isomorphic to any of the sheaves OCi
(−1), i = 1, . . . , N .

By (2.1), we have an exact sequence

0→ E → EC1 ⊕ · · · ⊕ ECN
→ T → 0

where C1, . . . , CN denote the irreducible components ofX. Let us consider a component
Ci such that ECi

6= 0. Then ECi
is a vector bundle on Ci ' P1 of rank ri and degree

di, and the Grothendieck description of vector bundles on the projective line gives an
isomorphism

ECi
' ⊕rij=1OP1(αi,j)

where the integers αi,j satisfy
∑ri

j=1 αi,j = di. Moreover, since we are assuming that

E is not isomorphic to OCi
(−1), the sheaf OP1(αi,j) is a strict quotient of E for every
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j = 1, . . . , ri, and the stability of E imposes that αi,j ≥ 0 so that di ≥ 0. By Proposition
2.7, E is a locally free sheaf.

It remains to show that ri = 1 for every i = 1, . . . , N . Suppose that the vector
bundle E has higher rank. Since any stable vector bundle is indecomposable, we can
apply Theorem 2.6. Notice that we can exclude the case E = L ⊗ Fr because the
sheaves L⊗Fr are strictly semistable by Lemma 2.10. Then, there is an étale covering
πs : EsN → EN , a line bundle L on EsN whose multidegree d(L) is non-periodic, and a
number m ∈ N, such that

E ' πs∗(L ⊗ Fm) .

If m > 1, the sheaf πs∗(L ⊗ Fm) is not stable because its subsheaf πs∗(L ⊗ Fm−1)
has the same slope. Hence, m = 1 and E ' πs∗(L). Since πs is a finite morphism,
χ(L) = χ(E) = 0, and the stability of E implies that L has to be a stable line bundle. By
Lemma 2.9, the multidegree of L is d = (0, . . . , 0) which contradicts the non-periodicity.
Then, E is a line bundle and we conclude the proof. �

This is related to the following result due to L. Bodnarchuck, presented by her in
VBAC-2007: If E is a simple vector bundle of rank r, multidegree d = (d1, . . . , dN) and
degree d on EN , one has (r, d) = (r, d1, . . . , dN) = 1. Moreover, if these conditions are
satisfied, the determinant gives an equivalence between the category of simple vector
bundles of rank r and multidegree (d1, . . . , dN) on EN and Picd(EN). See [4, Thm. 1.2.2,
Rem. 1.2.3] where the result is proved for Kodaira curves of type II, III and IV and
stated for the cycles EN , N ≤ 3.

Using the results on the moduli space Ms
X((1, . . . , 1), 0) given in [24, Theorem 4.1]

for r = h, we can summarize the structure of the open set of stable degree 0 sheaves
as follows.

Corollary 2.12. Let X be a curve of type EN with N ≥ 2 and H a polarization on it
of degree h. Let Ms

X(r, 0) be the open subset of stable sheaves with Hilbert polynomial
P (s) = rs. The following holds:

(1) If r = h, all the components of Ms
X(r, 0) given by (2.2) are empty except

Ms
X((1, . . . , 1), 0) which is isomorphic to the multiplicative group µ = k∗.

Moreover, the compactification of the component Ms
X((1, . . . , 1), 0) is isomor-

phic to a rational curve with one node.
(2) If r = hi for some i = 1, . . . , N , then Ms

X(r, 0) is a single point.
(3) Otherwise, Ms

X(r, 0) is empty.

Corollary 2.13. Let E be a semistable sheaf on X with Hilbert polynomial P (E) = rs.
If F is a Jordan-Hölder factor of E, then F is isomorphic either to one of the sheaves
OCi

(−1), where Ci are the irreducible components of X, or to a line bundle L on X of
multidegree d(L) = (0, . . . , 0).

Following the notions introduced in [10], this means that the shadows of any decom-
posable semistable sheaves of degree 0 contain at most 2 points.

Corollary 2.14. Let r = (r1, . . . , rN) ∈ ZN such that r = r1h1 + · · · + rNhN . The
dimension of the connected component M((r1, . . . , rN), 0) is equal to the minimum of
the ri with i = 1, . . . , N .

Proof. Suppose that r1 is the minimum of the ri’s. Any sheaf of the form

(2.4) (⊕ui=1Li)⊕ (⊕Nj=1OCj
(−1)⊕vj ) ,
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where u is at most r1, Li are line bundles on X all of them of multidegree (0, . . . , 0) and
u+vj = rj for all j, is a semistable sheaf that defines a point inM((r1, . . . , rN), 0). By
Corollary 2.13, if E is a semistable sheaf of degree 0 and multirank r(E) = (r1, . . . , rN),
its graded object is of the form given by Equation 2.4. Since the group of stable line
bundles Pic0

s(X) of degree 0 on X is determined by the exact sequence

1→ κ∗ → Pic0
s(X)→

N∏
i=1

Pic0(Ci)→ 1 ,

one gets that the dimension of this component is equal to r1. �

In the case of a rational curve with one node or one cusp, as happens also for smooth
elliptic curves, it is known [10] that all the Jordan-Hölder factors of any indecomposable
sheaf are isomorphic to each other. This is no longer true for cycles X = EN of
projective lines, as we will now prove.

Lemma 2.15. For m > 1, the graded object of the Atiyah indecomposable vector bundle
Fm is Gr(Fm) = ⊕mi=1OX
Proof. This follows from the exact sequences that define Fm in Lemma 2.5 and from
the fact that the structural sheaf OX of any cycle X is stable by Lemma 2.9. �

Proposition 2.16. Let E be a strictly semistable indecomposable sheaf on X with
Hilbert polynomial P (s) = rs. If E is not locally free, its graded object is Gr(E) '
⊕i∈AOCi

(−1) for a subset A ⊆ {1, . . . , N}. If E is locally free of rank r, then Gr(E)
is isomorphic either to L⊕r for a line bundle L of multidegree d(L) = (0, . . . , 0), or to
⊕Ni=1OCi

(−1)⊕r.

Proof. If E is not locally free, by Theorem 2.6, E ' pk∗(L) where L is a line bundle of
degree -1 on Ik and k, pk and L are determined by E . Since pk = πr ◦ i for some Galois
covering πr and some closed immersion i, using Lemma 2.4 above and [23, Lemma 3.2],
one has that E is H-semistable if and only if L is p∗k(H)-semistable. By [23, Theorem
4.5], there are not stable line bundles of degree -1 on Ik and there is exactly one strictly
semistable line bundle whose graded object is Gr(L) ' ⊕DOD(−1) where the sum runs
over all the irreducible components D of Ik. Since pk is a finite morphism, pk∗ is an
exact functor, and then the direct image by pk of a Jordan-Hölder filtration for L is
a filtration for E . Hence the graded object is also Gr(E) ' ⊕i∈AOCi

(−1) for a subset
A ⊆ {1, . . . , N}.

Suppose now that E is a vector bundle. Assume first that E = L ⊗ Fr for a line
bundle L of multidegree (0, . . . , 0). By Lemma 2.10, L is semistable; if it is stable,
then Gr(E) = L⊕r by Lemma 2.15; if L is strictly semistable, then its Jordan-Hölder
factors are OC1(−1), . . . ,OCN

(−1) by Corollary 2.13, and again by Lemma 2.15, one
has that Gr(E) ' ⊕Ni=1OCi

(−1)⊕r.
By Theorem 2.6, the only remaining case is when E ' πs∗(L ⊗ Fm) for an étale

covering πs : EsN → X = EN , a line bundle L on EsN with degree zero and non-periodic
multidegree, and a number m ∈ N. By Lemmas 2.4 and 2.10, E is H-semistable if and
only if L is π∗rH-semistable. Using Lemma 2.9, we see that the line bundle L is not
stable because otherwise one would have d(L) = (0, . . . , 0) and this contradicts the non-
periodicity of d(L). Proceeding as above one sees that the graded object of L⊗Fm is
⊕OC(−1)⊕m, where the sum runs over all the irreducible components C of EsN . Since
πs is a finite morphism, one sees that Gr(E) ' ⊕Ni=1OCi

(−1)⊕r. �
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This shows that in this case there exist indecomposable vector bundles whose Jordan-
Hölder factors are non-perfect.

2.5. The biggest component of the moduli space. In this subsection we de-
scribe completely the componentMX((r̄, . . . , r̄), 0) ⊂MX(r, 0) (r = r̄h) of semistable
sheaves of multirank (r̄, . . . , r̄) and degree zero for the curve EN (cf. Figure 2) with
respect to an arbitrary polarization H.

For any smooth elliptic curve or a rational curve with one node or one cusp, it is well
known that the moduli space Ms((1), 0) is isomorphic to the curve. This is no longer
true for reducible fibers. In the particular case of EN , the moduli spaceM((1, . . . , 1), 0)
is isomorphic to a rational curve with a node E1. This was proved in [12] if N = 2 and
in [24] for any N ≥ 2.

Figure 4. The rational curve with a node E1

Let us describe the isomorphismM((1, . . . , 1), 0)
∼→E1, following [24, Proposition 3.2],

and the inverse isomorphism. Let C1, . . . , CN be the rational components of X = EN
ordered cyclically and let us denote by γ : X → E1 the morphism which contracts

C2, . . . , CN and gives an isomorphism C1 − {x1, xN}
∼→E1 − {z̄}, where {x1, xN} are

the intersection points of C1 with the other components and z̄ is the singular point of
E1. Let us consider the sheaf on X ×X

(2.5) E = I∗∆ ⊗ π∗1OX(−y0) ,

where I∆ is the ideal sheaf of the diagonal immersion δ, π1 is the canonical projection
onto the first factor, and y0 is a fixed smooth point of C1. For every point y ∈ X the
restriction Ey of E to X × {y} is a semistable pure dimension one sheaf of multirank
(1, . . . , 1) and degree 0 [23, Proposition 3.2]. By [2, Corollary 2.65], the Fourier-Mukai
functor ΦEX→X induces a classifying morphism ϕ : X →M((1, . . . , 1), 0). Moreover, for
all points y ∈ C2 ∪ · · · ∪CN , the sheaves Ey are S-equivalent [24, Proposition 3.2], and
then ϕ factors through a morphism

ϕ̄ : E1 →M((1, . . . , 1), 0) ,

which one proves to be an isomorphism [24]. We shall give here a different proof (see
Proposition 2.18).

The smooth points y ∈ C1 are mapped to stable line bundles m∗y ⊗ OX(−y0) and
all the remaining points are mapped to the strictly semistable sheaves, all of them
S-equivalent to OC1(−1)⊕ · · · ⊕ OCN

(−1).

Let us describe the action on Db(X) of the quasi-inverse Φ
E∗[1]
X→X of ΦEX→X. Using the

exact sequence 0 → I∆ → OX×X → δ∗OX → 0 and flat cohomology base-change, we
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get for every complex F • in Db(X) an exact triangle

Φ
E∗[1]
X→X (F •)→ p∗(Rp∗(F • ⊗OX(y0))[1]→ F • ⊗OX(y0)[1]→ Φ

E∗[1]
X→X (F •)[1] ,

where p is the projection of X onto one point. Applying this formula to the Jordan-
Hölder factors OCi

(−1) we have

Φ
E∗[1]
X→X (OC1(−1)) = IC1 [1] , IC1 being the ideal sheaf of C1 in X,

Φ
E∗[1]
X→X (OCj

(−1)) = OCj
(−1) , for j > 1.

We now consider the integral functor Db(X)→ Db(E1) obtained as the composition of

the quasi-inverse Φ
E∗[1]
X→X of ΦEX→X and the derived push-forward Rγ∗ : D

b(X)→ Db(E1).
This is the integral functor with kernel

(2.6) K• = R(1× γ)∗E∗[1] .

Lemma 2.17. If F is a semistable sheaf on X of multirank (1, . . . , 1) and degree 0,
then ΦK

•
X→E1

(F) = Oz for a uniquely determined point z ∈ E1. Moreover z is the singular
point of E1 if and only if F is strictly semistable.

Proof. If F is stable, then F = ΦEX→X(Oy) for a smooth point y ∈ C1, so that
ΦK

•
X→E1

(F) = Oγ(y). Let us now compute the image of the Jordan-Hölder factors. If
j > 1, the restriction of γ to Cj factors through the singular point z̄ of E1, so that

ΦK
•

X→E1
(OCj

(−1)) = Rγ∗(OCj
(−1)) = 0 .

In the case j = 1, the ideal IC1 is supported on C2∪· · ·∪CN and one hasH0(X, IC1) = 0,
dimH1(X, IC1) = 1. As above, the restriction of γ to C2 ∪ · · · ∪ CN factors through
the singular point z̄ of E1 and one has

ΦK
•

X→E1
(OC1(−1)) = Rγ∗(IC1)[1] = Oz̄ .

It follows that if F is strictly semistable, by applying ΦK
•

X→E1
to a Jordan-Hölder filtra-

tion, one obtains ΦK
•

X→E1
(F) = Oz̄. �

Proposition 2.18. The integral functor ΦK
•

X→E1
induces a morphism

η : M((1, . . . , 1), 0)→ E1 ,

which is the inverse of ϕ̄.

Proof. The morphism η exists by Lemma 2.17 and [2, Corollary 2.65]. One checks
directly that η◦ϕ̄ coincides with the identity on the closed points. Since E1 is separated,
the subscheme Z ↪→ E1 of coincidences of η ◦ ϕ̄ and the identity is closed; moreover the
closed points are dense because E1 is projective, and thus, Z is topologically equal to
E1. Since E1 is reduced, Z is algebraically equal to E1 as well, so that η ◦ ϕ̄ is equal to
the identity. Taking into account that M((1, . . . , 1), 0) is projective and reduced, the
same argument proves that ϕ̄ ◦ η is the identity as well. �

Our next aim is to find the relationship between the moduli spaceM((r̄, . . . , r̄), 0) of
semistable pure dimension one sheaves of multirank (r̄, . . . , r̄) and degree 0 on a cycle
EN , and the symmetric product Symr̄E1 of the rational curve with a node.

The following result is known but we could not find a suitable reference:

Lemma 2.19. The moduli space M((r̄, . . . , r̄), 0) is reduced. �
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A proof of Lemma 2.19 in the case r̄ = 2 can be found in [31, Huitiême partie,
Theorème 18]. Seshadri shows also in [31] that the case r̄ > 2 follows from a property of
certain determinantal varieties, that was not proved at the time; however the property
was established later by Strickland [35] and this completed the proof (cf. also [33]).

Theorem 2.20. Assume r̄ > 1. There exists a scheme isomorphism

M((r̄, . . . , r̄), 0)
∼→Symr̄E1 .

Proof. Using a smooth point y0 of C1 as above, we construct an isomorphism ϕ̄ : E1 →
M((1, . . . , 1), 0). Since the direct sum of r̄ semistable sheaves of multirank (1, . . . , 1)
and degree 0 is semistable of multirank (r̄, . . . , r̄) and degree 0, we have a morphism

E1 ×
r̄
^· · · × E1 →M((1, . . . , 1), 0)×

r̄
^· · · ×M((1, . . . , 1), 0)

⊕−→M((r̄, . . . , r̄), 0) .

This morphism factors through the r̄-th symmetric product Symr̄E1 and then induces
a morphism ϕ̄r̄ : Symr̄E1 →M((r̄, . . . , r̄), 0), which is one-to-one on closed points by
Corollary 2.13.

If F is a semistable sheaf of multirank (r̄, . . . , r̄) and degree 0, by Corollary 2.13, its
graded object with respect to a Jordan-Hölder filtration is Gr(F) = L⊕a1

1 ⊕· · ·⊕L⊕am
m ⊕

(⊕Nj=1OCj
(−1))⊕(r̄−u), where Li are stable line bundles of degree 0 and u = a1+· · ·+am.

If K• is the kernel defined by Equation (2.6), using a Jordan-Hölder filtration of F as
in the proof of Lemma 2.17, one sees that

ΦK
•

X→E1
(F) = OZ1 ⊕ · · · ⊕ OZm ⊕OZ̄ ,

where Zi is a zero dimensional closed subscheme of E1 of length ai supported at a
smooth point z and Z̄ is a zero dimensional closed subscheme of length r̄−u supported
at the singular point z̄. Then ΦK

•
X→E1

(F) is a skyscraper sheaf of length r̄ on E1 and by
[2, Corollary 2.65] there exists a morphism

ηr : M((r̄, . . . , r̄), 0)→ Symr̄E1 ,

which is the inverse of ϕ̄r̄ on closed points. Since Symr̄E1 is projective and reduced,
proceeding as in the proof of Proposition 2.18 we see that ηr ◦ ϕ̄r̄ : Symr̄E1 → Symr̄E1

is the identity. SinceM((r̄, . . . , r̄), 0) is reduced, a similar argument shows that (ϕ̄r̄) ◦
(ηr) : M((r̄, . . . , r̄), 0)→M((r̄, . . . , r̄), 0) is the identity as well. �

Remark 2.21. Arguing as in Proposition 1.9 and Corollary 1.25, one gets that the
equivalences Φ and Ψ in Section 1 induce isomorphisms

M((r̄, . . . , r̄), d) 'M((d− r̄, . . . , d− r̄),−d) for d > r̄

M((r̄, . . . , r̄), d) 'M((r̄ − d, . . . , r̄ − d), d) for d ≤ r̄

M((r̄, . . . , r̄), d) 'M((r̄, . . . , r̄), r̄h+ d) .

Thus, for any integers λ, µ ∈ Z, one gets that the moduli spacesM((r̄, . . . , r̄), d) where
d = λhr̄ andM((r0, . . . , r0), d0) where r0 = µλr̄± r̄ and d0 = ±λhr̄ are also isomorphic
to the r̄-th symmetric product Symr̄E1 of the nodal curve. 4

Using the results obtained so far, we give a complete description of all moduli spaces
MX(r, d) of semistable sheaves on the curve E2 (cf. Figure 1) with respect to a polariza-
tion of the minimum possible degree h = 2. Note that if h = 2, the case 2r0/h ≤ d0 < r0

in Corollary 1.25 is not possible. One then has:
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Corollary 2.22. Let X be a curve of type E2 with a polarization H of degree h = 2,
and let (r, d) be a pair of integers with r ≥ 0. The moduli spaceMX(r, d) of semistable
sheaves with Hilbert polynomial P (s) = rs + d on X is isomorphic either to the d0-th
symmetric power Symd0(X) of the curve or to M(r0, 0). Moreover, if r0 is even, then
the biggest connected component of M(r0, 0) is isomorphic to the symmetric power
Symr0/2E1 of the nodal curve E1. �
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