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The symmetries of QED: a reminder

The QED action

2 The axial anomaly

2.1 The symmetries of QED.

After this general discussion we particularize our analysis to quantum electrodynamics (QED),
with action

S
QED

=

Z

d4x



�1

4
Fµ⌫F

µ⌫ +  (i@/ � m) � e /A 

�

. (2.1)

The theory is classically invariant under local phase transformation of the fermion field

 (x) �! ei↵(x) (x), ↵(x) 2 R. (2.2)

accompanied by a gauge transformation of the vector potential

Aµ(x) �! Aµ(x) + @µ↵(x). (2.3)

If the fermion is massless, m = 0, the theory has an additional global symmetry consisting on
chiral phase transformations

 (x) �! ei��5 (x), � 2 R. (2.4)

Applying Noether’s theorem, the massless theory has two classically conserved currents. One
is the vector current associated with phase transformations (2.2) with constant ↵

Jµ
V

=  �µ =) @µJ
µ
V

= 0. (2.5)

This is the electromagnetic current coupling to the gauge field Aµ. Its conservation is crucial
for the gauge invariance of the theory. The second conserved current is the one associated with
axial-vector transformations (2.4)

Jµ
A

=  �µ�
5

 =) @µJ
µ
A

= 0. (2.6)

Unlike the vector current, this does not couple to any gauge field. For massive fermions, the
conservation of the axial current is classically broken and instead of (2.6) we have

@µJ
µ
A = 2im �

5

 . (2.7)

In the quantum theory, conservation laws are codified in the Ward identities. In the case
of QED, there is a simple way to derive the Ward identities associated with the vector (gauge)
transformations by noticing that they reflect the invariance of physical amplitudes with respect
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This symmetry can be promoted to U(1) gauge invariance
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 (x), (x) �! e

i↵
 (x), ↵ 2 R
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We can also allow a second type of axial global transformations of the fermion 
field:

This is not a symmetry of the action, due to the mass term. If we define the 
axial-vector current
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Axial global symmetry is recovered in the massless limit m �! 0

(pseudovector-pseudoscalar equivalence)
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At the level of the amplitudes, conservations equations give rise to Ward 
identities.

In the case of QED, a general amplitude in momentum space has the structureto gauge transformations in the external photons. Generically, the amplitude in momentum
space with n incoming and m outgoing photons has the structure2

A(p
1

, . . . , pn; q1

, . . . , qm) = ✏µ1(p1

) . . . ✏µn(pn)✏⌫1(q1

)⇤ . . . ✏⌫n(qm)
⇤

⇥ �µ1...µn⌫1...⌫m(p
1

, . . . , pn; q1

, . . . , qm), (2.8)

where all external momenta are taken on shell, p2

i = q2

i = 0. Under a gauge transformation,
the polarization vectors transform by a term proportional to the momentum

"µ(p) �! "µ(p) + �pµ. (2.9)

The invariance of the amplitude with respect to these gauge transformations means that (2.8)
has to vanish when any of the polarization vector ✏µ(p) is replaced by the momentum pµ.
Symbolically

pµi�
...µi...⌫1...⌫m(pk; q`) = 0 = q⌫i�

µ1...µm...⌫i...(pk; q`). (2.10)

If gauge invariance is preserved in the quantum theory, these identities should be preserved
order by order in perturbation theory, i.e. once all diagrams contributing to a given order have
been summed.

2.2 The triangle diagram

Having discussed the basic ideas concerning anomalies, we proceed to deal in detail with a
first example of an anomalous symmetry in quantum field theory. We studing the quantum
conservation of the vector-axial current (2.6) in a theory of a fermion interacting with an
external classical gauge field Aµ through an interaction term

S
int

= �e

Z

d4x Jµ
V

(x)Aµ(x). (2.11)

The expectation value of the axial-vector current in the background of the gauge field is given,
in the functional integral language, by

hJµ
A

(x)iA =

Z

D D Jµ
A

(x)ei
R

d4x[(i@/�m) �eJµ
VAµ]

Z

D D ei
R

d4x[ (i@/�m) �eJµ
VAµ]

. (2.12)

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures

2The amplitude may have also have fermions in the external states, that we omit here to keep things simple.
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leads to the gauge Ward identity
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Or more generally,                                              with          gauge invariant 
operators.
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Oi(x)
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What about the axial-vector current?

We study a Dirac fermion coupled to an external gauge field Aµ(x)

to gauge transformations in the external photons. Generically, the amplitude in momentum
space with n incoming and m outgoing photons has the structure2
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As we will see later, this gauge Ward identity can be formulated in position space in its full
generality as
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V
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1
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1

) . . .On(xn)i = 0, (2.11)

where Oi(x) are any gauge invariant operator of the theory.
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first example of an anomalous symmetry in quantum field theory. We studing the quantum
conservation of the vector-axial current (2.6) in a theory of a fermion interacting with an
external classical gauge field Aµ through an interaction term

S
int

= �e

Z

d4x Jµ
V

(x)Aµ(x). (2.12)

The expectation value of the axial-vector current in the background of the gauge field is given,
in the functional integral language, by

hJµ
A

(x)iA =

Z

D D Jµ
A

(x)ei
R

d4x[(i@/�m) �eJµ
VAµ]

Z

D D ei
R

d4x[ (i@/�m) �eJµ
VAµ]

. (2.13)

2The amplitude may have also have fermions in the external states, that we omit here to keep things simple.
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where Oi(x) are any gauge invariant operator of the theory.

2.2 The triangle diagram

Having discussed the basic ideas concerning anomalies, we proceed to deal in detail with a
first example of an anomalous symmetry in quantum field theory. We studing the quantum
conservation of the vector-axial current (2.6) in a theory of a fermion interacting with an
external classical gauge field Aµ through an interaction term

S
int
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Z
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(x)Aµ(x). (2.12)

The expectation value of the axial-vector current in the background of the gauge field is given,
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Expanding in perturbation theory in the coupling constant,

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures
are those of a free Dirac field. Thus, they can be interpreted as the expectation value of time-
ordered products of operators in the vacuum of the free theory |0i. In our case, to second order
in e we have

hJµ
A

(x)iA = �ie

Z

d4y h0|T [Jµ
A

(x)J↵
V

(y)]|0iA↵(y) (2.14)

� e2

2

Z

d4y
1

d4y
2

h0|T [Jµ
A

(x)J↵
V

(y
1

)J�
V

(y
2

)]|0iA↵(y1

)A�(y2

) + . . .

Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
A

(0)J↵
V

(y � x)]|0i =
Z

d4p

(2⇡)4
�µ↵(k)eik·(x�y) (2.15)

The function inside the integral admits the following diagrammatic interpretation

i�µ⌫(k) = k

= e

Z

d4`

(2⇡)4
Tr

✓

�µ�
5

i

/̀� m+ i✏
�⌫ i

/̀� /k � m+ i✏

◆

(2.16)

Using the trace identities

Tr (�
5

�µ�⌫) = Tr (�
5

�µ�⌫�↵) = 0, Tr (�
5

�µ�⌫�↵��) = �4i✏µ⌫↵�, (2.17)

we find the integral reduces itself to

i�µ⌫(k) = �4ie ✏µ↵⌫�k�

Z

d4`

(2⇡)4
`↵

(`2 � m2 + i✏)[(` � k)2 � m2 + i✏]
. (2.18)

This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity

kµi�
µ⌫(k) = 0 = k⌫i�

µ⌫(k). (2.19)

In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.
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We look at the first term

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures
are those of a free Dirac field. Thus, they can be interpreted as the expectation value of time-
ordered products of operators in the vacuum of the free theory |0i. In our case, to second order
in e we have
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) + . . .

Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
A

(0)J↵
V

(y � x)]|0i =
Z

d4p

(2⇡)4
�µ↵(k)eik·(x�y) (2.15)

The function inside the integral admits the following diagrammatic interpretation
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= e
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(2⇡)4
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(2.16)

Using the trace identities
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�µ�⌫) = Tr (�
5

�µ�⌫�↵) = 0, Tr (�
5

�µ�⌫�↵��) = �4i✏µ⌫↵�, (2.17)

we find the integral reduces itself to

i�µ⌫(k) = �4ie ✏µ↵⌫�k�

Z

d4`

(2⇡)4
`↵

(`2 � m2 + i✏)[(` � k)2 � m2 + i✏]
. (2.18)

This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity

kµi�
µ⌫(k) = 0 = k⌫i�

µ⌫(k). (2.19)

In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
A

(0)J↵
V

(y � x)]|0i =
Z
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(2⇡)4
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Using the trace identities
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5
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5
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we find the integral reduces itself to
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This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity

kµi�
µ⌫(k) = 0 = k⌫i�

µ⌫(k). (2.19)

In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.

10

Our aim is to compute its contribution to the axial-vector Ward identity 

h@µJµ
A(x)iA = ? kµi�

µ⌫(k) = ?
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To compute the integral

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures
are those of a free Dirac field. Thus, they can be interpreted as the expectation value of time-
ordered products of operators in the vacuum of the free theory |0i. In our case, to second order
in e we have

hJµ
A

(x)iA = �ie

Z

d4y h0|T [Jµ
A

(x)J↵
V

(y)]|0iA↵(y) (2.14)
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
A

(0)J↵
V

(y � x)]|0i =
Z

d4p

(2⇡)4
�µ↵(k)eik·(x�y) (2.15)

The function inside the integral admits the following diagrammatic interpretation
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(2⇡)4
Tr
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Using the trace identities
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�µ�⌫) = Tr (�
5

�µ�⌫�↵) = 0, Tr (�
5
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we find the integral reduces itself to
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(2⇡)4
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(`2 � m2 + i✏)[(` � k)2 � m2 + i✏]
. (2.18)

This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity

kµi�
µ⌫(k) = 0 = k⌫i�

µ⌫(k). (2.19)

In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.
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The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures
are those of a free Dirac field. Thus, they can be interpreted as the expectation value of time-
ordered products of operators in the vacuum of the free theory |0i. In our case, to second order
in e we have
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
A

(0)J↵
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(y � x)]|0i =
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(2⇡)4
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This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity
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In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.
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The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures
are those of a free Dirac field. Thus, they can be interpreted as the expectation value of time-
ordered products of operators in the vacuum of the free theory |0i. In our case, to second order
in e we have
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
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V

(y � x)]|0i =
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This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity
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In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
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The right-hand side can be computed in powers of the electric charge e. Notice that in this
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space
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invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
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Due to the antisymmetry of          the amplitude satisfy both the vector and 
axial-vector Ward identities
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
A

(0)J↵
V

(y � x)]|0i =
Z

d4p

(2⇡)4
�µ↵(k)eik·(x�y) (2.15)

The function inside the integral admits the following diagrammatic interpretation

i�µ⌫(k) = k

= e

Z

d4`

(2⇡)4
Tr

✓

�µ�
5

i

/̀� m+ i✏
�⌫ i

/̀� /k � m+ i✏

◆

(2.16)

Using the trace identities

Tr (�
5

�µ�⌫) = Tr (�
5

�µ�⌫�↵) = 0, Tr (�
5

�µ�⌫�↵��) = �4i✏µ⌫↵�, (2.17)

we find the integral reduces itself to

i�µ⌫(k) = �4ie ✏µ↵⌫�k�

Z

d4`

(2⇡)4
`↵

(`2 � m2 + i✏)[(` � k)2 � m2 + i✏]
. (2.18)

This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity

kµi�
µ⌫(k) = 0 = k⌫i�

µ⌫(k). (2.19)

In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.
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✏µ⌫↵�

Moreover, by Lorentz invariance i�µ⌫ = 0
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To find any anomaly, we have to go to the next order. Going to momentum 
space

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of

11

the conservation equation is

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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The calculation involves now two triangle diagrams:

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of

11
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Applying the Feynman rules of QED, we have

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of

11

so we only need to compute the integrals…
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Applying the Feynman rules of QED, we have

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓
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/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆
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↵ $ �

◆
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of

11These integrals are linearly divergent!!

BEWARE!!

so we only need to compute the integrals…
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Interlude: linearly divergent integrals
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Let us begin with the simplest one-dimensional case:

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓
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/̀� m+ i✏
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��
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of

11

If the function f(x) is integrable on     we conclude that              .

2 The axial anomaly

2.1 The symmetries of QED.

After this general discussion we particularize our analysis to quantum electrodynamics (QED),
with action

S
QED

=

Z

d4x



�1

4
Fµ⌫F

µ⌫ +  (i@/ � m) � e /A 

�

. (2.1)

The theory is classically invariant under local phase transformation of the fermion field

 (x) �! ei↵(x) (x), ↵(x) 2 R. (2.2)

accompanied by a gauge transformation of the vector potential

Aµ(x) �! Aµ(x) + @µ↵(x). (2.3)

If the fermion is massless, m = 0, the theory has an additional global symmetry consisting on
chiral phase transformations

 (x) �! ei��5 (x), � 2 R. (2.4)

Applying Noether’s theorem, the massless theory has two classically conserved currents. One
is the vector current associated with phase transformations (2.2) with constant ↵

Jµ
V

=  �µ =) @µJ
µ
V

= 0. (2.5)

This is the electromagnetic current coupling to the gauge field Aµ. Its conservation is crucial
for the gauge invariance of the theory. The second conserved current is the one associated with
axial-vector transformations (2.4)

Jµ
A

=  �µ�
5

 =) @µJ
µ
A

= 0. (2.6)

Unlike the vector current, this does not couple to any gauge field. For massive fermions, the
conservation of the axial current is classically broken and instead of (2.6) we have

@µJ
µ
A = 2im �

5

 . (2.7)

In the quantum theory, conservation laws are codified in the Ward identities. In the case
of QED, there is a simple way to derive the Ward identities associated with the vector (gauge)
transformations by noticing that they reflect the invariance of physical amplitudes with respect

8

I(⇠) = 0

Let us however assume that for large |x|

f(x) ⇠ 1

x

f(x) ⇠ constant

(logarithmically divergent integral)

(linearly divergent integral)

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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expanding the integrand around x

we arrive at:

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with

12



M.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de MadridM.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de Madrid

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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Thus, for linearly divergent integrals:

Shifting the integration variable changes the value of a linearly divergent integral!

Something similar happens in four dimensions

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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To make sense of the integral, we perform a Wick 
rotation into Euclidean space

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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If the integral is linearly divergent

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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Expanding the integrand

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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Again, only the first term contributes. Applying Gauß’ theoremone derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
4

(⇠) =
i

16⇡4

Z

S3
1

d⌃↵⇠
↵fµ(`E) =

iC

16⇡4

⇠↵

Z

d⌦
3

`µE`
↵
E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z

d⌦
3

`µE`
↵
E

`2E
=

1

4
�µ↵Vol(S3) =

⇡2

2
�µ↵, (2.33)

we finally get
Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.
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(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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as

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

2

4⇠↵
@fµ

@`↵E

�

�

�

�

⇠=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

⇠=0

+ . . .

3

5 , (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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The remaining integral can be done using asymptotic rotational invariance

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
4

(⇠) =
i

16⇡4

Z

S3
1

d⌃↵⇠
↵fµ(`E) =

iC

16⇡4

⇠↵

Z

d⌦
3

`µE`
↵
E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z

d⌦
3

`µE`
↵
E

`2E
=

1

4
�µ↵Vol(S3) =

⇡2

2
�µ↵, (2.33)

we finally get
Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials
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✏µ���q↵p
�q� + f
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✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.

13

With this, we got

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have
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where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write
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we finally get
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As in the one-dimensional case, the value of the integral also depends on the shift.
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Very important: remember the origin of the constant C

Thus, the ambiguity only depends on the large momentum behavior of the 
integrand (i.e., it doesn’t depend on the masses of the particles running in the 
loop!)

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
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(⇠) = i
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�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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Back to the axial anomaly…
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Applying the Feynman rules of QED, we have

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =
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i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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What is the relevance of the previous discussion?

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
4

(⇠) =
i

16⇡4

Z

S3
1

d⌃↵⇠
↵fµ(`E) =

iC

16⇡4

⇠↵

Z

d⌦
3

`µE`
↵
E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z

d⌦
3

`µE`
↵
E

`2E
=

1

4
�µ↵Vol(S3) =

⇡2

2
�µ↵, (2.33)

we finally get
Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.
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The value of the triangle diagram depends on how we parametrize the loop 
momentum!
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How do we deal with this ambiguity?

The amplitude                    should satisfy a number of condition:i�µ↵�(p, q)

• Parity: begin parity odd, it should contain an            tensor

• Poincaré invariance: it should be a rank-three tensor depending 
only on p and q

✏µ⌫↵�

This forces the following structure for the amplitude

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials
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✏µ↵��p
� + f

2

✏µ↵��q
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3
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5
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�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

where fi ⌘ fi(p, q) are functions of the momenta p and q. As a matter of fact, the functions
f

7

(p, q) and f
8

(p, q) can be reabsorbed in the remaining ones using the identity

✏↵���wµ + ✏���µw↵ + ✏��µ↵w� + ✏�µ↵�w� + ✏µ↵��w� = 0, (2.37)

valid for any four-dimensional vector w↵. Then we write the amplitude in terms of just six
scalar functions

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� + f

6

✏µ���q↵p
�q� (2.38)

Next, we apply Bose symmetry of the two vector currents and impose the condition

i�µ↵�(p, q) = i�µ�↵(q, p), (2.39)

This means that the coe�cients in (2.37) satisfy the relations

f
1

(p, q) = �f
2

(q, p),

f
3

(p, q) = �f
6

(q, p), (2.40)

f
4

(p, q) = �f
5

(q, p).

In addition, the function �µ↵�(p, q) in (2.22) has dimension of energy. Dimensional analysis
shows that f

1

and f
2

are dimensionless, whereas f
3

-f
6

have dimensions of (energy)�2. These
latter functions, therefore, are expressed in terms of convergent integrals that are unambiguous.
As a consequence, all ambiguities of the linearly divergent integrals (2.23) have to be contained
in the coe�cients f

1

and f
2

.
To take care of this, we notice that

p↵i�µ↵�(p, q) =
⇣

f
2

� p2f
5

� p · qf
6

⌘

✏µ�↵�q
↵p�,

q�i�µ↵�(p, q) =
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f
1

� q2f
4

� p · qf
3

⌘

✏µ↵��q
�p�, (2.41)

(p+ q)µi�µ↵�(p, q) =
⇣

� f
1

+ f
2

⌘

✏↵���q
�p�.
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• Bose symmetry: it should satisfy 
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Let’s do a bit of dimensional analysis:

[i�µ↵� ] = E

[f1] = [f2] = E0

[f3] = . . . = [f6] = E�2

(

Hence f1 and f2 are logarithmically divergent integrals while f3 ,…, f6 are 
convergent integrals.
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All ambiguities in the amplitude are confined to the coefficients f1 and f2.

Next we look at the contractions
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From the first two identities we find that the ambiguities in f
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the conservation of the vector current is imposed, i.e. when the Ward identities
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)
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i

/̀� m+ i✏
(/p+ /q)�

5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

�

. (2.44)

Using the trivial identity
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Then, the integrand takes the form
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where in the second line we have used the cyclic property of the trace and {�
5

, �µ} = 0.
It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write

(p+ q)µi�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
I↵�(`, p, q) + e2

Z
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completely fixes the ambiguous integrals in terms of finite ones

f1(p, q) = q2f4(p, q)� p · qf3(p, q)

f2(p, q) = p2f5(p, q)� p · qf6(p, q)
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Using these identities, the axial anomaly is given by

From the first two identities we find that the ambiguities in f
1

and f
2

can be fixed by demanding
the conservation of the vector current is imposed, i.e. when the Ward identities

p↵i�µ↵�(p, q) = 0 = q�i�µ↵�(p, q). (2.42)

are satisfied. Once this is done, i�µ↵�(p, q) is written only in terms of the coe�cients f
3

-f
8

, that
are convergent and unambiguous. Thus, the anomaly is given by the following combination of
finite integrals
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h

p2f
5

� q2f
4

+ p · q(�f
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)
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Then, the integrand takes the form
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where in the second line we have used the cyclic property of the trace and {�
5

, �µ} = 0.
It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write

(p+ q)µi�µ↵�(p, q) = e2

Z
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(2⇡)4
I↵�(`, p, q) + e2

Z

d4`
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I�↵(`, q, p). (2.48)
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With these general considerations we learn a number of things:

• All ambiguities in the triangle diagram are codified in 
logarithmically divergent integrals.

• These are completely fixed by requiring the conservation of 
the gauge current.

• Once this is done, the axial anomaly is given by finite integrals 
(i.e., free of UV ambiguities).



M.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de MadridM.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de Madrid

The (actual) calculation
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We start with the computation of

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space
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so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =
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(p+ q)µ +
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(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
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f(x+ ⇠) � f(x)
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. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral
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When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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From the first two identities we find that the ambiguities in f
1

and f
2

can be fixed by demanding
the conservation of the vector current is imposed, i.e. when the Ward identities

p↵i�µ↵�(p, q) = 0 = q�i�µ↵�(p, q). (2.42)

are satisfied. Once this is done, i�µ↵�(p, q) is written only in terms of the coe�cients f
3

-f
8

, that
are convergent and unambiguous. Thus, the anomaly is given by the following combination of
finite integrals
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)

I↵�(`, p, q) = Tr
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where in the second line we have used the cyclic property of the trace and {�
5

, �µ} = 0.
It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write
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To reduce the expression, we use the trivial identity

From the first two identities we find that the ambiguities in f
1

and f
2

can be fixed by demanding
the conservation of the vector current is imposed, i.e. when the Ward identities

p↵i�µ↵�(p, q) = 0 = q�i�µ↵�(p, q). (2.42)

are satisfied. Once this is done, i�µ↵�(p, q) is written only in terms of the coe�cients f
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, that
are convergent and unambiguous. Thus, the anomaly is given by the following combination of
finite integrals
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)

I↵�(`, p, q) = Tr
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where in the second line we have used the cyclic property of the trace and {�
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, �µ} = 0.
It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write
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and write

From the first two identities we find that the ambiguities in f
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can be fixed by demanding
the conservation of the vector current is imposed, i.e. when the Ward identities

p↵i�µ↵�(p, q) = 0 = q�i�µ↵�(p, q). (2.42)
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, that
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)
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where in the second line we have used the cyclic property of the trace and {�
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It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write
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The integrand takes the form

From the first two identities we find that the ambiguities in f
1

and f
2

can be fixed by demanding
the conservation of the vector current is imposed, i.e. when the Ward identities

p↵i�µ↵�(p, q) = 0 = q�i�µ↵�(p, q). (2.42)

are satisfied. Once this is done, i�µ↵�(p, q) is written only in terms of the coe�cients f
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, that
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)
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where in the second line we have used the cyclic property of the trace and {�
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It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write
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and integrate the result over the loop momentum
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)
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where in the second line we have used the cyclic property of the trace and {�
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It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write
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The integrand takes the form

From the first two identities we find that the ambiguities in f
1

and f
2

can be fixed by demanding
the conservation of the vector current is imposed, i.e. when the Ward identities

p↵i�µ↵�(p, q) = 0 = q�i�µ↵�(p, q). (2.42)

are satisfied. Once this is done, i�µ↵�(p, q) is written only in terms of the coe�cients f
3

-f
8

, that
are convergent and unambiguous. Thus, the anomaly is given by the following combination of
finite integrals

(p+ q)µi�µ↵�(p, q) =
h

p2f
5

� q2f
4

+ p · q(�f
3

+ f
6

)
i

✏↵���q
�p�. (2.43)

To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)
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Using the trivial identity

/p+ /q = (/̀� m) � (/̀� /p � /q +m) + 2m (2.45)
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Then, the integrand takes the form

I↵�(`, p, q) = iTr
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where in the second line we have used the cyclic property of the trace and {�
5

, �µ} = 0.
It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write

(p+ q)µi�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
I↵�(`, p, q) + e2

Z

d4`

(2⇡)4
I�↵(`, q, p). (2.48)
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15The last term is the one-loop contribution to The last term in Eq. (2.47) is the contribution of the two triangle diagrams with the axial
current replaced by the scalar bilinear 2m �
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 . Thus, we define
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, (2.49)

which is the momentum space representation of the correlation function h �
5

 i at one loop.
The cross indicates the insertion of the pseudoscalar operator  �

5

 . As we will see later,
i�↵�(p, q) is given by convergent integrals, so no ambiguities arise there.

Using this piece of notation just introduced and reordering the terms a little bit, we have
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After reducing the propagators and computing the corresponding traces, we arrive at
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It is important to keep in mind that inside each integrals the first and second terms come
respectively from the first and second triangle diagram in Eq. (2.22).

Naively applying a shift in the integration momentum, we would conclude that both integrals
in the previous expression vanish and that there is no anomaly for the axial current. However,
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It is important to keep in mind that inside each integrals the first and second terms come
respectively from the first and second triangle diagram in Eq. (2.22).

Naively applying a shift in the integration momentum, we would conclude that both integrals
in the previous expression vanish and that there is no anomaly for the axial current. However,
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The two integrals are linearly divergent and have the structure
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As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,
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` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials
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8
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�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.
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We find the result

the these are linearly divergent so shifts in the integration momentum change the value of the
integral (notice that the apparent quadratic divergences cancel due to antisymmetry of the ✏
symbol). Still, using Eq. (2.34) we find that the shift in each of the two integrals is given by
⇠µ = pµ and ⇠µ = �qµ respectively. Adding the two results for the two integrals, we find
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The second integrand is identically zero and we have
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The axial Ward identity is violated in the limit             .m ! 0

The axial-vector symmetry is anomalous!
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the these are linearly divergent so shifts in the integration momentum change the value of the
integral (notice that the apparent quadratic divergences cancel due to antisymmetry of the ✏
symbol). Still, using Eq. (2.34) we find that the shift in each of the two integrals is given by
⇠µ = pµ and ⇠µ = �qµ respectively. Adding the two results for the two integrals, we find

(p+ q)µi�µ↵�(p, q) =
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For each of the two traces, we use the identities
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The second integrand is identically zero and we have
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= 0

(no shift required)
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The remaining integral
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has again the structure

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
4

(⇠) =
i

16⇡4
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S3
1

d⌃↵⇠
↵fµ(`E) =

iC

16⇡4

⇠↵

Z

d⌦
3

`µE`
↵
E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z

d⌦
3

`µE`
↵
E

`2E
=

1

4
�µ↵Vol(S3) =

⇡2

2
�µ↵, (2.33)

we finally get
Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.

13

with

⇠µ = �pµ

Reducing the denominators, the result is

p↵i�µ↵�(p, q) = 4e2
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✏µ��⌫(` � p � q)�(` � p)⌫
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� ✏µ��⌫(` � q)�`⌫

[(` � q)2 � m2 + i✏](`2 � m2 + i✏)

�

(2.57)

Again, we have two terms inside each integral related by a shift in the loop momentum ⇠µ = �pµ.
Applying again Eq. (2.34) we find

p↵i�µ↵�(p, q) = � ie2

8⇡2

✏µ��⌫p
�q⌫ (2.58)

Our results (2.52) and (2.58) are rather puzzling. We have found that although there is an
anomaly both in the vector and the axial-vector current! This is a disaster, since the vector
current couples to a gauge field and its non conservation renders the theory inconsistent. Going
back to our generic analysis carried out above, it seems that our computation have failed to
impose vector current conservation properly.

To solve this problem, we have to take into account that the very result we have found is
intrinsically ambiguous. The right-hand side of Eqs. (2.52) and (2.58) depend in fact on how the
loop momentum in each of the two triangle diagrams is parametrized in the first place. In fact,
the value of the anomaly of the axial and vector currents depends on how this parametrization
is chosen. To see this in detail, we go back to the correlation function i�µ↵�(p, q) shown in Eq.
(2.23) to see how it changes when the loop momentum is reparametrized.

Fortunately, we do not need to repeat the whole calculation since the change in the amplitude
can be written from general considerations. Lorentz invariance, parity, and Bose symmetry
imply that under a general shift of the loop momentum ` the amplitude changes as

i�µ↵�(p, q) �! i�µ↵�(p, q) +
ie2

8⇡2

a✏µ↵��(p � q)�, (2.59)

where a is a numerical constant that depends on the shift. Using our results (2.52) and (2.58),
we find the anomalous axial-vector Ward identity take the form

(p+ q)µi�µ↵�(p, q) =
ie2

4⇡2

(1 � a)✏µ��⌫p
�q⌫ + 2mi�↵�(p, q),

p↵i�µ↵�(p, q) = � ie2

8⇡2

(1 + a)✏↵��⌫p
�q⌫ . (2.60)

Choosing a loop momentum for which a = �1, we arrive at the conservation of the vector
current

p↵i�µ↵�(p, q) = 0, (2.61)
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The computation shows that the gauge Ward identity is violated!
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But remember the ambiguity in parametrizing the loop momentum. It seems 
we made the wrong choice…

Changing the parametrization

i�µ↵�(p, q) �! i�µ↵�(p, q) +�µ↵�(↵,�)

introduces a change in the amplitude

Can we select α and β so the vector Ward identity is enforced?

`µ �! `µ + ↵pµ + �qµ
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Luckily, we don’t have to redo the whole computation! Imposing:

• Lorentz invariance

• Bose symmetry

• Parity

and remembering that the ambiguity does not depend on masses, we 
only have one possibility for the change in the amplitude
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impose vector current conservation properly.
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loop momentum in each of the two triangle diagrams is parametrized in the first place. In fact,
the value of the anomaly of the axial and vector currents depends on how this parametrization
is chosen. To see this in detail, we go back to the correlation function i�µ↵�(p, q) shown in Eq.
(2.23) to see how it changes when the loop momentum is reparametrized.

Fortunately, we do not need to repeat the whole calculation since the change in the amplitude
can be written from general considerations. Lorentz invariance, parity, and Bose symmetry
imply that under a general shift of the loop momentum ` the amplitude changes as

i�µ↵�(p, q) �! i�µ↵�(p, q) +
ie2

8⇡2

a✏µ↵��(p � q)�, (2.59)

where a is a numerical constant that depends on the shift. Using our results (2.52) and (2.58),
we find the anomalous axial-vector Ward identity take the form

(p+ q)µi�µ↵�(p, q) =
ie2

4⇡2

(1 � a)✏µ��⌫p
�q⌫ + 2mi�↵�(p, q),

p↵i�µ↵�(p, q) = � ie2

8⇡2

(1 + a)✏↵��⌫p
�q⌫ . (2.60)

Choosing a loop momentum for which a = �1, we arrive at the conservation of the vector
current

p↵i�µ↵�(p, q) = 0, (2.61)

18

where a = a(↵,�)
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where the conservation equation of the axial-vector current picks up an anomalous term that
survives in the massless limit

(p+ q)µi�µ↵�(p, q) =
ie2

2⇡2

✏↵��⌫p
�q⌫ + 2mi�↵�(p, q) (2.62)

Looking at (2.60) we notice another important point. There is no value of a for which both
Ward identities are simultaneously satisfied. This is a general feature of the axial anomaly.
There is a tension between vector and axial-vector current conservation. Of course, the only
physical choice is the one we took: the vector current coupling to the photon has to be conserved
to preserve the consistency of QED.

To find the corresponding expressions for the expectation value of the axial current diver-
gence in position space, we only have to use Eq. (2.21). After a couple of integrations by parts,
we find

@µhJµ
A(x)iA =

e2

16⇡2

✏µ⌫↵�Fµ⌫F↵� + 2imh (x)�
5

 (x)iA . (2.63)

The second term is the quantum version of the right-hand side of the classical equation (2.7).
The first term, however, is completely new and independent of the fermion mass. This means
that it survive the limit m ! 0 where the theory is classically invariant under chiral transfor-
mations. This spoils the Ward identity associated with the conservation of the axial current
and the corresponding symmetry is anomalous, i.e. broken by quantum e↵ects. This result is
the celebrated Adler-Bell-Jackiw anomaly [3, 4]

(p+ q)µi�µ↵�(p, q) =
ie2~
2⇡2

✏↵���p
�q�, (2.64)

or in position space

@µhJµ
A(x)iA =

e2~
16⇡2

✏µ⌫↵�Fµ⌫F↵�. (2.65)

Here we have restored the powers of ~ to stress the quantum nature of the axial anomaly.
The calculation we have presented highlights the fact that the axial anomaly in QED is

the result of Bose symmetry and both Lorentz and gauge invariance, and is determined by
ultraviolet finite integrals. All ambiguities associated with the linearly divergent integral has
been fixed by requiring that the quantum theory satisfies the vector Ward identity at one
loop. The anomaly can be then calculated using any regularization scheme preserving gauge
invariance, such as Pauli-Villars or dimensional regularization4 (see, for example, [9, 8]). As we
have seen, the anomaly is independent of the particular method used as far as it preserves the
vector Ward identity.

4The use of dimensional regularization requires some care due to the problem of defining the chirality matrix
for general dimensions.
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The result for the axial anomaly is obtained computing the triangle diagram 
using any regularization method that preserves gauge invariance: e.g.

• Pauli-Villars (see Bertlmann)

• Dimensional regularization, but beware of 𝜸5 (see Peskin & Schroeder)

In our calculation we did not commit to any particular regularization method 
(in fact, we didn’t have to), only to the preservation of gauge invariance.

• Dispersion relations (see Bertlmann)

• Point-splitting
…
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Jack Steinberger	

(b. 1921)

Transforming the result back to position space,

we arrive at the celebrated Adler-Bell-Jackiw anomaly

Julian Schwinger	

(1918-1994)

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space
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)]|0i =
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d4p
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Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form
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A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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An example of the “wrong” 
regularization
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Our analysis of the ambiguities in the triangle diagram might seem a bit 
formal…

The ambiguity, however, can be reobtained using a point-splitting regularization 
of the axial-vector current composite operator.

where            and      satisfies↵ 2 R ✏µ ✏0 > 0
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The regularization is gauge invariant only for a = 1

o
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We compute now its divergence
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and use the fermion EOM
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@µJ
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Identifying                and expanding to first order in      we haveJ

µ
A(x)reg ✏µ

and now compute its vacuum expectation value
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Next, we evaluate hJµ
A(x)regiA
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where the propagator can be computed diagrammatically as:

G(x, y)A =
x x x x

y y y y
⇥⇥ ⇥ ⇥ ⇥⇥⇥+ + + + . . .
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G(x, y)A =
x x x x

y y y y
⇥⇥ ⇥ ⇥ ⇥⇥⇥+ + + + . . .

We look at the term linear in the gauge field:

⇥⇥ = ie

Z
d4p

(2⇡)4

Z
d4q

(2⇡)4

✓
i

p/+ 1
2q/�m

�µ

i

p/� 1
2q/�m

◆
e�iq·xeip·✏A

µ

(q)
x� ✏

2
x+

✏

2

With this we go back to

and 

hJµ

A(x)iA = �Tr

h
�

µ

�5G

⇣
x� ✏

2

, x+

✏

2

⌘

A

i
exp

"
iea

Z
x+✏/2

x�✏/2
dy

↵

A ↵

(y)

#

@µhJµ
A(x)regiA = 2imh[ �5 ]regiA � ie✏

↵hJµ
A(x)iA

⇣
@↵Aµ � a@µA↵ + . . .

⌘



M.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de Madrid

G(x, y)A =
x x x x

y y y y
⇥⇥ ⇥ ⇥ ⇥⇥⇥+ + + + . . .

We look at the term linear in the gauge field:

⇥⇥ = ie

Z
d4p

(2⇡)4

Z
d4q

(2⇡)4

✓
i

p/+ 1
2q/�m

�µ

i

p/� 1
2q/�m

◆
e�iq·xeip·✏A

µ

(q)
x� ✏

2
x+

✏

2

With this we go back to

and 

hJµ

A(x)iA = �Tr

h
�

µ

�5G

⇣
x� ✏

2

, x+

✏

2

⌘

A

i
exp

"
iea

Z
x+✏/2

x�✏/2
dy

↵

A ↵

(y)

#

and use 

✏↵eip·✏ = �i
@

@p↵
eip·✏ integration by parts
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With this result we return to the regularized anomaly
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Using the simple identity

lim
✏!0

✏

↵hJµ
A(x)regiA =

ie

16⇡2
✏

µ↵⌫�F⌫�(x)

✏µ↵⌫�
⇣
@↵Aµ � a@µA↵

⌘
= (1 + a)✏µ↵⌫�@↵Aµ =

1 + a

2
✏µ↵⌫�F↵µ

we arrive at the result 

@µhJµ
A(x)regiA = 2imh[ �5 ]regiA � ie✏

↵hJµ
A(x)iA

⇣
@↵Aµ � a@µA↵ + . . .

⌘
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✏!0

@µhJµ
A(x)regiA = 2im lim

✏!0
h[ �5 ]regiA +

e

2

32⇡2
(1 + a)✏µ⌫↵�Fµ⌫F↵�

For 

We recover the ABJ anomaly 
and       is gauge invariant

   is conserved but is not 
gauge invariant

a = 1 For a = �1

Jµ
A

Jµ
A
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What about higher loops?

The ABJ anomaly is a one-loop result. Is it corrected by higher loop diagrams? 
E.g. 

2.3 The Adler-Bardeen Theorem

A very interesting feature of the axial anomaly computed in the previous section is that its
form does not receive corrections due to higher loop diagrams. This result was proved by S.
Adler and W. Bardeen [5] and goes by the name of Adler-Bardeen theorem.

The gist of the argument can be easily grasped. Pertubatively, the origin of the anomaly
lies in the ambiguity associated with the linearly divergent integral in the triangle diagram. At
two loops, corrections to this result are obtained by inserting photon propagators, for example

+ + + . . . (2.66)

By naive power counting, these diagrams are linearly divergent and it might seem that we are
running into the same problem as in the one-loop case. There is a very important di↵erence,
though. Here, unlike in the triangle diagram, the linear divergence is not associated with the
integration over the loop momentum coupling to the axial-vector current. In computing the
contributions of these diagrams, we can integrate first over the fermion loop momentum and
only then over the second loop momentum associated running in the photon line. Since the
fermion loop contains now five propagators, the first integral is finite and does not require regu-
larization. We have still to do the second (divergent) integral over the photon loop momentum.
Fortunately, this remaining integration can be regularized in a way that do not interfere with
chiral symmetry: for example, a gauge-invariant higher-derivative term

�S =
1

⇤2

Z

d4xFµ⌫⇤F µ⌫ (2.67)

can be added to the QED action, so the photon propagator has a leading large-momentum
behavior of the form ⇤2p�4. The result is that chiral invariance is nowhere broken by the
regularization procedure and, as a consequence, the two-loop diagrams do not contribute to the
divergence of the axial-vector current5.

The heuristic argument that we have just presented can be refined into a proof to all orders
of the nonrenormalization of the axial anomaly. The generic L-loop diagram contributing to
the Ward identity (p + q)µ�µ↵�(p, q) can be drawn in the form shown in Fig. 1, where the
subgraph G0 only includes vector current couplings. Its contribution can be regularized in a
way compatible with gauge invariant, such as adding the extra term (2.71) to the QED action.

5Notice that adding the term (2.71) to the action does not modify the one-loop result for the anomaly, since
the triangle diagram does not contain any photon propagator.

20

These diagrams contain five fermion propagator. The integration over the 
fermion loop momentum

24

lim
x

f x 0 (0.276)

0 (0.277)

0 (0.278)

JµA J!V J"V (0.279)

µJµV 0 (0.280)

p! i#µ!" p,q 0 q" i#µ!" p,q 0 (0.281)

f2 p,q p2 f5 p,q p q f6 p,q (0.282)

f1 p,q q2 f4 p,q p q f3 p,q (0.283)

f3 p,q f6 q, p
ie2

$2

1

0
dx

1 x

0
dy

xy
x 1 x p2 y 1 y q2 2xyp q

f4 p,q f5 q, p
ie2

$2

1

0
dx

1 x

0
dy

y 1 y
x 1 x p2 y 1 y q2 2xyp q

f7 p,q f8 q, p 0

µ JµA x A
e2

16$2
%µ&!"Fµ&F!" (0.284)

. . .
d4ℓ
2$ 4

5

i 1

i
ℓ 'i i%

. . . (0.285)

is convergent. The remaining loops can be handled using a gauge invariant 
regulator, for example

2.3 Nonrenormalization Theorems 27

As a matter of fact, there is also the possibility of defining the theory in such a way
that neither the vector, nor the axial-vector current are conserved. However, unlike
the axial-vector, the vector current couples to a gauge field and its nonconservation
leads to disastrous results for the theory. That is why the axial anomaly is forced
upon us by the consistency of QED at the quantum level.

2.3 Nonrenormalization Theorems

A very interesting feature of the axial anomaly obtained in the previous section is
that it does not receive corrections due to higher loop diagrams. This result, known
as the Adler-Bardeen theorem, was proved in [3]. Although the full proof of this
result is quite involved, the gist of the argument can be easily grasped.
Pertubatively, the origin of the anomaly lies in the ambiguity associated with the

linearly divergent integral associated with the triangle diagram. At two loops, cor-
rections to this result are obtained by inserting photon propagators in the diagram,
for example

. . . (2.44)

The contribution of each of the diagrams contains five fermion propagators. This
eliminates the ambiguous linearly divergent integral appearing at one loop diagram,
rendering the integration convergent. We have still to integrate over the photon loop
momentum. However, this remaining integration can be regularized in a way that do
not interfere with chiral symmetry: for example, a gauge-invariant term

/S
1
02

d4xFµ% Fµ% (2.45)

can be added to the QED action, leading to a photon propagatorwith a leading large-
momentum behavior of the form02p 4. The result is that the two-loop diagrams do
not contribute to the divergence of the axial-vector current and therefore the anomaly
does not receive corrections to this order2. This argument at two loops carries over
to higher loop-diagrams resulting in that the perturbative contribution to the axial
anomaly is exhausted by the one-loop result.
A much simpler proof of the Adler-Bardeen theorem can be constructed using

the renormalization group equations [4].
Here comes the discussion of Zee’s proof.

2 Notice that adding the term (2.45) to the action does not modify the one-loop result for the
anomaly, since the triangle diagram does not contain any photon propagator.

25

Gµ! p
"2

p4
(0.286)
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Figure 1: Generic topology contributing to kµi�µ↵�(p, q) at n-loops, with k = p + q. The
subgraph G0 includes only vector couplings.
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Applying the Feynman rules of QED, we write (to simplify the notation we define k = p+ q)
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
the right as ` � ra � k (with j = b, . . . , 2n). At this point it is useful to use the trivial identity
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
tribution of the diagram in Fig. 1 but with ikµ�

µ�
5

replaced by 2im�
5

. This is the n-loop
contribution to the amplitude �↵�(p, q) introduced in Eq. (2.49). Thus, we write

kµi�µ↵�(p, q)
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L-loop +�↵�(p, q). (2.71)

To compute �↵�(p, q), we plug the last two terms appearing in Eq. (2.74) into the expression
(2.72). After simple manipulations the relevant term can be recast as
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Consider a generic topology contributing 
to the divergence of the axial-vector 
current:

This heuristic argument can be made more precise.
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
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over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
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Thus, the result has the structure:
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depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
the right as ` � ra � k (with j = b, . . . , 2n). At this point it is useful to use the trivial identity

/k�
5

= (/̀+ /rk � m)�
5

+ �
5

(/̀+ /rk � /k � m) + 2m�
5

(2.69)

to write

i

/̀+ /rk � m
ikµ�

µ�
5

i

/̀+ /rk � k � m
=

i

/̀+ /rk � m
(2im�

5

)
i

/̀+ /rk � k � m

� i

/̀+ /rk � m
�

5

� �
5

i

/̀+ /rk � /k � m
. (2.70)
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Applying the Feynman rules of QED, we write (to simplify the notation we define k = p+ q)
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
the right as ` � ra � k (with j = b, . . . , 2n). At this point it is useful to use the trivial identity
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
tribution of the diagram in Fig. 1 but with ikµ�

µ�
5

replaced by 2im�
5

. This is the n-loop
contribution to the amplitude �↵�(p, q) introduced in Eq. (2.49). Thus, we write

kµi�µ↵�(p, q)
L-loop = 2mi�↵�(p, q)

L-loop +�↵�(p, q). (2.71)

To compute �↵�(p, q), we plug the last two terms appearing in Eq. (2.74) into the expression
(2.72). After simple manipulations the relevant term can be recast as
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Thus, the result has the structure:
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The only surviving terms areDue to the relative minus sign resulting from the anticommutation of �
5

with �↵b in (2.72),
most of the terms in the sum cancel. In fact, the only surviving ones are
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Using this result we are led to the expression
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where we have used the cyclicity of the trace to move �
5

to the left in the second product.
For loop diagrams with more than two photons attached to the fermion loop, n > 1, the

integration over ` is convergent (it contains 2n+ 1 � 5 fermion propagators). It is thus safe to
shift the loop momenta without incurring in ambiguities, so the integration over the two terms
inside the curly bracket in Eq. (2.78) cancel each other and we find

�↵�(p, q) = 0 for n > 1. (2.75)

For n = 1 both integrals are linearly divergent and we are faced again with the calculation of
the triangle diagrams carried out above. We might have additional loops in the subgraph G0,
but this corresponds either to rescattering of the two emitted photons or self-energy corrections.
These diagrams contribute to the renormalization of the electric charge or the gauge field wave
function, but the form of the anomaly found in Eq. (2.62) remains unchanged. With this we
have proved the Adler-Bardeen theorem: the value of the axial anomaly does not receive any
corrections beyond one loop, apart from renormalizations of the electric charge and gauge field
strength.

The argument presented here is not a↵ected by considering diagrams with more than two
emitted photons from G0. In the case of diagrams containing external fermions we have to
consider, besides the topology shown in Fig. 1 (including a number of fermion lines emitted
from the subgraphG0), a second one in which the axial current is hooked to a fermion propagator
connected to the external fermion lines. This second type of diagrams only contributes to the
part of the amplitude 2mi�↵�(p, q) that vanishes in the limit of zero fermion mass and does
not a↵ect the anomaly (see the original paper by Adler and Bardeen [5] for details).
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For n > 1 we can shift the integration momentum and cancel the terms.  

The ABJ anomaly does not receive quantum corrections

(Adler-Bardeen theorem)
Steven Adler	


(b. 1939)
William A. Bardeen	


(b. 1941)
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UV or IR?
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Although given by finite integrals, on general grounds the anomaly can be seen 
as a fundamental incompatibility between the classical symmetry and 
the regularization procedure. 

From this point of view the anomaly can be regarded as a UV effect.

The symmetry is anomalous because the breaking introduced by the 
regularization cannot be subtracted by a local counterterm added to the 
action.

But there is also an IR side…
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Let us look at the on-shell amplitude

where                      We recall,

2.4 Ultraviolet or infrared?

Many presentations of the axial anomaly stress the role of the ultraviolet regularization as the
origin of the quantum breakdown of chiral symmetry. This might lead to regard the anomaly
as a consequence of the need to regularize the theory. This is, however, not exactly the case.
As we have already seen, the axial anomaly comes from the finite part of the triangle diagram
which is independent of the particular gauge invariant regulator used. To clarify this point, we
go back to i�µ↵�(p, q) defined in Eq. (2.20). By taking the two photons on shell, we evaluate
the physical amplitude

h0|Jµ
A

(0)|p, qiA = i�µ↵�(p, q) fA↵(p) fA�(q)

�

�

�

�

�

p2
=q2=0

, (2.76)

where fAµ(p) is the momentum space gauge field satisfying the transversality condition

pµ fAµ(p) = 0. (2.77)

The quantity i�µ↵�(p, q) is given by Eq. (2.38). Enforcing the vector Ward identity fixes

f
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3
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(p, q) = p · qf
6

(p, q), (2.78)

where we have set p2 = q2 = 0. This same on-shell condition implies that all functions are
symmetric under the interchange of p and q. Calculating the amplitude using a gauge invariant
regulator leads to
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The on-shell amplitude is then written in terms of these two integrals as

i�µ↵�(p, q)
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The term proportional to f
4

(p, q) vanishes after contracting the amplitude with the momenta
of the external photons, p↵q�. As for the first term, it is useful to use the ✏-tensor identity

⌘µ(⌫✏↵���) = 0 (2.81)
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There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials
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where fi ⌘ fi(p, q) are functions of the momenta p and q. As a matter of fact, the functions
f

7

(p, q) and f
8

(p, q) can be reabsorbed in the remaining ones using the identity

✏↵���wµ + ✏���µw↵ + ✏��µ↵w� + ✏�µ↵�w� + ✏µ↵��w� = 0, (2.37)

valid for any four-dimensional vector w↵. Then we write the amplitude in terms of just six
scalar functions
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Next, we apply Bose symmetry of the two vector currents and impose the condition

i�µ↵�(p, q) = i�µ�↵(q, p), (2.39)

This means that the coe�cients in (2.37) satisfy the relations

f
1

(p, q) = �f
2

(q, p),

f
3

(p, q) = �f
6

(q, p), (2.40)

f
4

(p, q) = �f
5

(q, p).

In addition, the function �µ↵�(p, q) in (2.22) has dimension of energy. Dimensional analysis
shows that f

1

and f
2

are dimensionless, whereas f
3

-f
6

have dimensions of (energy)�2. These
latter functions, therefore, are expressed in terms of convergent integrals that are unambiguous.
As a consequence, all ambiguities of the linearly divergent integrals (2.23) have to be contained
in the coe�cients f

1

and f
2

.
To take care of this, we notice that

p↵i�µ↵�(p, q) =
⇣

f
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� p2f
5

� p · qf
6

⌘

✏µ�↵�q
↵p�,

q�i�µ↵�(p, q) =
⇣

f
1

� q2f
4

� p · qf
3

⌘

✏µ↵��q
�p�, (2.41)

(p+ q)µi�µ↵�(p, q) =
⇣

� f
1

+ f
2

⌘

✏↵���q
�p�.
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and due to the on-shell condition 

fi(p, q) = fi(p · q) (symmetric in p and q)

and from Bose symmetry                ,                , and                . f1 = �f2 f3 = �f6 f4 = �f5

Vector current conservation further implies:

f2 � p2f5 � p · qf6 = 0

f1 � q2f4 � p · qf3 = 0
f1(p, q) = p · qf3(p, q)

h0|Jµ
A(0)|p, qiA = �µ↵�(p, q) fA↵(p) fA�(q)

�����
p2=q2=0
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The amplitude is then given only in terms of              and f3(p, q) f4(p, q)

2.4 Ultraviolet or infrared?

Many presentations of the axial anomaly stress the role of the ultraviolet regularization as the
origin of the quantum breakdown of chiral symmetry. This might lead to regard the anomaly
as a consequence of the need to regularize the theory. This is, however, not exactly the case.
As we have already seen, the axial anomaly comes from the finite part of the triangle diagram
which is independent of the particular gauge invariant regulator used. To clarify this point, we
go back to i�µ↵�(p, q) defined in Eq. (2.20). By taking the two photons on shell, we evaluate
the physical amplitude

h0|Jµ
A

(0)|p, qiA = i�µ↵�(p, q) fA↵(p) fA�(q)

�

�

�

�

�

p2
=q2=0

, (2.76)

where fAµ(p) is the momentum space gauge field satisfying the transversality condition

pµ fAµ(p) = 0. (2.77)

The quantity i�µ↵�(p, q) is given by Eq. (2.38). Enforcing the vector Ward identity fixes

f
1

(p, q) = p · qf
3

(p, q), f
2

(p, q) = p · qf
6

(p, q), (2.78)

where we have set p2 = q2 = 0. This same on-shell condition implies that all functions are
symmetric under the interchange of p and q. Calculating the amplitude using a gauge invariant
regulator leads to

f
3

(p, q) = �f
6

(p, q) =
ie2

⇡2

Z

1

0

dx

Z

1�x

0

dy
xy

2xyp · q + i✏
,

f
4

(p, q) = �f
5

(p, q) =
ie2

⇡2

Z

1

0

dx

Z

1�x

0

dy
y(1 � y)

2xyp · q + i✏
. (2.79)

The on-shell amplitude is then written in terms of these two integrals as

i�µ↵�(p, q)

�

�

�

�

�

p2
=q2=0

= f
3

(p, q)
h

p · q ✏µ↵��(p� � q�) + ✏µ↵��p�p
�q� � ✏µ���q↵p

�q�
i

+ f
4

(p, q)
⇣

✏µ↵��q� � ✏µ���p↵

⌘

p�q� (2.80)

The term proportional to f
4

(p, q) vanishes after contracting the amplitude with the momenta
of the external photons, p↵q�. As for the first term, it is useful to use the ✏-tensor identity

⌘µ(⌫✏↵���) = 0 (2.81)
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24

Due to                   , the term with            does not contribute to the amplitude.f4(p, q)

Using as wellto write

�p · q✏µ↵��p� = ✏↵���pµp
�q� + ✏µ���p↵p

�q� + ✏µ↵��p�p
�q�,

p · q✏µ↵��q� = ✏↵���qµp
�q� + ✏µ���q↵p

�q� + ✏µ↵��q�p
�q�. (2.82)

We use these results in Eq. (2.80) to arrive at the following expression of the physical
amplitude

h0|Jµ
A(0)|p, qiA = �(p+ q)µf

3

(p, q)✏↵���p
�q� fA ↵(p) fA �(q), (2.83)

where the function f
3

(p, q) has the value

lim
m!0

f
3

(p, q) =
ie2

2⇡2

1

(p+ q)2 + i✏
, (2.84)

so the final expression for the amplitude is

lim
m!0

h0|Jµ
A(0)|p, qiA = � ie2

2⇡2

(p+ q)µ

(p+ q)2 + i✏
✏↵���p

�q� fA ↵(p) fA �(q). (2.85)

We observe the existence of a pole at momentum p+q = 0. This is crucial for the axial anomaly:
the contraction of (2.85) with (p+ q)µ cancels this pole and retrieves the ABJ anomaly (2.64).

The existence of this pole is related to a discontinuity in the imaginary part of the triangle
diagram as the mass of the fermion is taken to zero. To see how this happens, we use the
Cutkosky rules to write

Im�µ↵�(p, q) = + (2.86)

where the cuts indicate that the fermion propagators are replaced by delta functions enforcing
the on-shell condition for the corresponding line and we are supposed to sum over the polar-
izations and momenta of the intermediate state. Thus, the imaginary part of the amplitude is
written in terms of two on-shell amplitudes: one corresponding to the creation by Jµ

A(0) of a
electron-positron pair out of the vacuum and a second one corresponding to the annihilation of
the pair into two photons

Im�µ↵�(p, q)✏↵(p,�1

)✏�(q,�2

)

⇠
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Z

d3k
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;k
2

, �
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i
in

(2.87)

⇥
out

hk
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, �
1

;k
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, �
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|Jµ
A(0)|0iin

,
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the amplitude takes the form:

h0|Jµ
A(0)|p, qiA = i(p+ q)µf3(p, q)✏↵���p

�q� fA ↵(p) fA �(q)
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regulator leads to

f
3

(p, q) = �f
6

(p, q) =
ie2

⇡2

Z

1

0

dx

Z

1�x

0

dy
xy

2xyp · q + i✏
,

f
4

(p, q) = �f
5

(p, q) =
ie2

⇡2

Z

1

0

dx

Z

1�x

0

dy
y(1 � y)

2xyp · q + i✏
. (2.79)

The on-shell amplitude is then written in terms of these two integrals as

i�µ↵�(p, q)

�

�

�

�

�

p2
=q2=0

= f
3

(p, q)
h

p · q ✏µ↵��(p� � q�) + ✏µ↵��p�p
�q� � ✏µ���q↵p

�q�
i

+ f
4

(p, q)
⇣

✏µ↵��q� � ✏µ���p↵

⌘

p�q� (2.80)

The term proportional to f
4

(p, q) vanishes after contracting the amplitude with the momenta
of the external photons, p↵q�. As for the first term, it is useful to use the ✏-tensor identity

⌘µ(⌫✏↵���) = 0 (2.81)
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The existence of this pole is related to a discontinuity in the imaginary part of the triangle
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the amplitude takes the form:

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

where fi ⌘ fi(p, q) are functions of the momenta p and q. As a matter of fact, the functions
f

7

(p, q) and f
8

(p, q) can be reabsorbed in the remaining ones using the identity

✏↵���wµ + ✏���µw↵ + ✏��µ↵w� + ✏�µ↵�w� + ✏µ↵��w� = 0, (2.37)

valid for any four-dimensional vector w↵. Then we write the amplitude in terms of just six
scalar functions

i�µ↵�(p, q) = f
1

✏µ↵��p
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2

✏µ↵��q
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�q� (2.38)

Next, we apply Bose symmetry of the two vector currents and impose the condition

i�µ↵�(p, q) = i�µ�↵(q, p), (2.39)

This means that the coe�cients in (2.37) satisfy the relations

f
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(p, q) = �f
2

(q, p),

f
3

(p, q) = �f
6

(q, p), (2.40)

f
4

(p, q) = �f
5

(q, p).

In addition, the function �µ↵�(p, q) in (2.22) has dimension of energy. Dimensional analysis
shows that f

1

and f
2

are dimensionless, whereas f
3

-f
6

have dimensions of (energy)�2. These
latter functions, therefore, are expressed in terms of convergent integrals that are unambiguous.
As a consequence, all ambiguities of the linearly divergent integrals (2.23) have to be contained
in the coe�cients f

1

and f
2

.
To take care of this, we notice that
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The function             can be computed from Feynman diagramsf3(p, q)

f3(p, q) =
ie

2

⇡

2

Z 1

0
dx

Z 1�x

0
dy

xy

2xyp · q �m

2

In the massless fermion limit, we have

lim
m!0

f3(p, q) =
ie2

2⇡2

1

(p+ q)2

and we have

At the level of the current, the anomaly is signalled by a massless pole!

h0|Jµ
A(0)|p, qiA = i(p+ q)µf3(p, q)✏↵���p

�q� fA ↵(p) fA �(q)

lim
m!0

h0|Jµ
A(0)|p, qiA = � e2

2⇡2

(p+ q)µ

(p+ q)2
✏↵���p

�q� fA ↵(p) fA �(q).
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Thus, the anomaly has two faces:

• When looking at the divergence of the current, it comes associated with 
ambiguities in the UV regularization of the theory. Fixing them forces us to 
give up the axial-vector symmetry in favor of gauge invariance.

• When looking at the current itself, it is signaled by the appearance of a 
massless pole (i.e., an IR effect)
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In fact, being careful, we should have written the result for the amplitude as

lim
m!0

h0|Jµ
A(0)|p, qiA = � e2

2⇡2

(p+ q)µ

(p+ q)2 + i✏
✏↵���p

�q� fA ↵(p) fA �(q).

The reason is that the integration over     in 

produces a logarithm and an imaginary part

for (p+ q)2 > 4m2

f3(p, q) =
ie

2

⇡

2

Z 1

0
dx

Z 1�x

0
dy

xy

2xyp · q �m

2

y

Im f3(p, q) 6= 0

when           the real part develops a pole and the imaginary part a delta-
function singularity whose coefficient is the anomaly

m ! 0

lim
m!0

Im�µ↵�(p, q) =
e2

2⇡
✏↵���p�q�(p+ q)µ�

⇣
(p+ q)2

⌘
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From this point of view, the axial anomaly is marked by a discontinuity in the imaginary (ab-
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This discontinuity in the imaginary part of the amplitude can be understood 
physically. 

Let us use the Cutkosky rules:

where, e.g.
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These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative
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is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches
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We use these results in Eq. (2.80) to arrive at the following expression of the physical
amplitude
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We observe the existence of a pole at momentum p+q = 0. This is crucial for the axial anomaly:
the contraction of (2.85) with (p+ q)µ cancels this pole and retrieves the ABJ anomaly (2.64).

The existence of this pole is related to a discontinuity in the imaginary part of the triangle
diagram as the mass of the fermion is taken to zero. To see how this happens, we use the
Cutkosky rules to write

Im�µ↵�(p, q) = + (2.86)

where the cuts indicate that the fermion propagators are replaced by delta functions enforcing
the on-shell condition for the corresponding line and we are supposed to sum over the polar-
izations and momenta of the intermediate state. Thus, the imaginary part of the amplitude is
written in terms of two on-shell amplitudes: one corresponding to the creation by Jµ

A(0) of a
electron-positron pair out of the vacuum and a second one corresponding to the annihilation of
the pair into two photons
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This discontinuity in the imaginary part of the amplitude can be understood 
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These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches
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We use these results in Eq. (2.80) to arrive at the following expression of the physical
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We observe the existence of a pole at momentum p+q = 0. This is crucial for the axial anomaly:
the contraction of (2.85) with (p+ q)µ cancels this pole and retrieves the ABJ anomaly (2.64).

The existence of this pole is related to a discontinuity in the imaginary part of the triangle
diagram as the mass of the fermion is taken to zero. To see how this happens, we use the
Cutkosky rules to write

Im�µ↵�(p, q) = + (2.86)

where the cuts indicate that the fermion propagators are replaced by delta functions enforcing
the on-shell condition for the corresponding line and we are supposed to sum over the polar-
izations and momenta of the intermediate state. Thus, the imaginary part of the amplitude is
written in terms of two on-shell amplitudes: one corresponding to the creation by Jµ

A(0) of a
electron-positron pair out of the vacuum and a second one corresponding to the annihilation of
the pair into two photons

Im�µ↵�(p, q)✏↵(p,�1

)✏�(q,�2

)

⇠
X

�1,�2

Z

d3k
1

Z

d3k
2 out

hp,�
1

;q,�
2

|k
1

, �
1

;k
2

, �
2

i
in

(2.87)

⇥
out

hk
1

, �
1

;k
2

, �
2

|Jµ
A(0)|0iin

,

25

Im�µ↵�(p, q) ⇠

to write

�p · q✏µ↵��p� = ✏↵���pµp
�q� + ✏µ���p↵p

�q� + ✏µ↵��p�p
�q�,

p · q✏µ↵��q� = ✏↵���qµp
�q� + ✏µ���q↵p

�q� + ✏µ↵��q�p
�q�. (2.82)

We use these results in Eq. (2.80) to arrive at the following expression of the physical
amplitude

h0|Jµ
A(0)|p, qiA = �(p+ q)µf

3

(p, q)✏↵���p
�q� fA ↵(p) fA �(q), (2.83)

where the function f
3

(p, q) has the value

lim
m!0

f
3

(p, q) =
ie2

2⇡2

1

(p+ q)2 + i✏
, (2.84)

so the final expression for the amplitude is

lim
m!0

h0|Jµ
A(0)|p, qiA = � ie2

2⇡2

(p+ q)µ

(p+ q)2 + i✏
✏↵���p

�q� fA ↵(p) fA �(q). (2.85)

We observe the existence of a pole at momentum p+q = 0. This is crucial for the axial anomaly:
the contraction of (2.85) with (p+ q)µ cancels this pole and retrieves the ABJ anomaly (2.64).

The existence of this pole is related to a discontinuity in the imaginary part of the triangle
diagram as the mass of the fermion is taken to zero. To see how this happens, we use the
Cutkosky rules to write

Im�µ↵�(p, q) = + (2.86)
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Im�µ↵�(p, q) = + (2.86)

where the cuts indicate that the fermion propagators are replaced by delta functions enforcing
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The first important thing is to invoke the Landau-Yang theorem: no state 
of spin-one can decay into two on-shell photons.

Thus, the fermion-antifermion system should have zero spin. This means that 
in the center of mass frame they have the same helicities

�1 = �2 ⌘ �
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where �
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2

represent the helicities of the fermion-antifermion pair and we have introduced the
photon polarization vectors ✏↵(p,�1

) and ✏�(q,�2

).
We analyze now the conditions for the amplitude on the right-hand side of this equation

to be nonvanishing. The first thing to point out, is that the so-called Landau-Yang theorem
[6] forbids the decay of state with spin s = 1 into two on-shell photons. This means that the
fermion-antifermion intermediate state must have vanishing total spin and, as a consequence,
in the center of mass reference frame the helicities of both fermions have to be equal, �

1

= �
2

.
However, this condition makes the amplitude for the creation of the fermion pair by the axial
current equal to zero in the limit of massless fermions. On general grounds, this amplitude is
proportional to the fermion bilinear
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In the limit of massless fermions, the helicities of the fermion and the antifermion tend respec-
tively to plus and minus the chirality, namely
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we find the result
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Interestingly, the second amplitude in (2.87) also vanishes in the massless limit as a conse-
quence of the conservation of chirality in the QED vertex. This follows from the general form
of the amplitude for the fermion-antifermion annihilation into two photons, which is given by
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Focusing in the two numerators of this expression, and using (2.90), we find in the zero mass
limit the two terms in the amplitude are proportional to factors of the form

v⌥(k2

)�µ�↵�⌫u±(k) = 0. (2.93)

Then, our naive conclusion would be that the imaginary part of the triangle diagram vanishes
in the limit of massless fermions

lim
m!0

Im�µ↵�(p, q) = 0. (2.94)

26

We begin with the pair creation by the axial-vector current:

In the massless limit, the helicity turns into ± chirality

where �
1

, �
2

represent the helicities of the fermion-antifermion pair and we have introduced the
photon polarization vectors ✏↵(p,�1

) and ✏�(q,�2

).
We analyze now the conditions for the amplitude on the right-hand side of this equation

to be nonvanishing. The first thing to point out, is that the so-called Landau-Yang theorem
[6] forbids the decay of state with spin s = 1 into two on-shell photons. This means that the
fermion-antifermion intermediate state must have vanishing total spin and, as a consequence,
in the center of mass reference frame the helicities of both fermions have to be equal, �

1

= �
2

.
However, this condition makes the amplitude for the creation of the fermion pair by the axial
current equal to zero in the limit of massless fermions. On general grounds, this amplitude is
proportional to the fermion bilinear

out

hk
1

, �;k
2

, �|Jµ
A(0)|0iin

⇠ v(k
1

, �)�µ�
5

u(k
2

, �). (2.88)

In the limit of massless fermions, the helicities of the fermion and the antifermion tend respec-
tively to plus and minus the chirality, namely

lim
m!0

u(p,±1

2
) = u±(p), lim

m!0

v(p,±1

2
) = v⌥(p), (2.89)

so using

v⌥(k2

)�µ�
5

u±(k1

) = 0 (2.90)

we find the result

lim
m!0

out

hk
1

, �;k
2

, �|Jµ
A(0)|0iin

= 0. (2.91)

Interestingly, the second amplitude in (2.87) also vanishes in the massless limit as a conse-
quence of the conservation of chirality in the QED vertex. This follows from the general form
of the amplitude for the fermion-antifermion annihilation into two photons, which is given by

out

hp,�
1

;q,�
2

|k
1

, �;k
2

, �i
in

= �e2✏µ(p,�1

)✏⌫(k,�2

)

⇥v(k
2

, �)



�µ(/k
1

� /p+m)�⌫

(k
1

� p)2 � m2

+
�⌫(/k

2

� /q +m)�µ

(k
2

� q)2 � m2

�

u(k
1

, �). (2.92)

Focusing in the two numerators of this expression, and using (2.90), we find in the zero mass
limit the two terms in the amplitude are proportional to factors of the form

v⌥(k2

)�µ�↵�⌫u±(k) = 0. (2.93)

Then, our naive conclusion would be that the imaginary part of the triangle diagram vanishes
in the limit of massless fermions

lim
m!0

Im�µ↵�(p, q) = 0. (2.94)

26

where �
1

, �
2

represent the helicities of the fermion-antifermion pair and we have introduced the
photon polarization vectors ✏↵(p,�1

) and ✏�(q,�2

).
We analyze now the conditions for the amplitude on the right-hand side of this equation

to be nonvanishing. The first thing to point out, is that the so-called Landau-Yang theorem
[6] forbids the decay of state with spin s = 1 into two on-shell photons. This means that the
fermion-antifermion intermediate state must have vanishing total spin and, as a consequence,
in the center of mass reference frame the helicities of both fermions have to be equal, �

1

= �
2

.
However, this condition makes the amplitude for the creation of the fermion pair by the axial
current equal to zero in the limit of massless fermions. On general grounds, this amplitude is
proportional to the fermion bilinear

out

hk
1

, �;k
2

, �|Jµ
A(0)|0iin

⇠ v(k
1

, �)�µ�
5

u(k
2

, �). (2.88)

In the limit of massless fermions, the helicities of the fermion and the antifermion tend respec-
tively to plus and minus the chirality, namely

lim
m!0

u(p,±1

2
) = u±(p), lim

m!0

v(p,±1

2
) = v⌥(p), (2.89)

so using

v⌥(k2

)�µ�
5

u±(k1

) = 0 (2.90)

we find the result

lim
m!0

out

hk
1

, �;k
2

, �|Jµ
A(0)|0iin

= 0. (2.91)

Interestingly, the second amplitude in (2.87) also vanishes in the massless limit as a conse-
quence of the conservation of chirality in the QED vertex. This follows from the general form
of the amplitude for the fermion-antifermion annihilation into two photons, which is given by

out

hp,�
1

;q,�
2

|k
1

, �;k
2

, �i
in

= �e2✏µ(p,�1

)✏⌫(k,�2

)

⇥v(k
2

, �)



�µ(/k
1

� /p+m)�⌫

(k
1

� p)2 � m2

+
�⌫(/k

2

� /q +m)�µ

(k
2

� q)2 � m2

�

u(k
1

, �). (2.92)

Focusing in the two numerators of this expression, and using (2.90), we find in the zero mass
limit the two terms in the amplitude are proportional to factors of the form

v⌥(k2

)�µ�↵�⌫u±(k) = 0. (2.93)

Then, our naive conclusion would be that the imaginary part of the triangle diagram vanishes
in the limit of massless fermions

lim
m!0

Im�µ↵�(p, q) = 0. (2.94)

26

Thus, using that

where �
1

, �
2

represent the helicities of the fermion-antifermion pair and we have introduced the
photon polarization vectors ✏↵(p,�1

) and ✏�(q,�2

).
We analyze now the conditions for the amplitude on the right-hand side of this equation

to be nonvanishing. The first thing to point out, is that the so-called Landau-Yang theorem
[6] forbids the decay of state with spin s = 1 into two on-shell photons. This means that the
fermion-antifermion intermediate state must have vanishing total spin and, as a consequence,
in the center of mass reference frame the helicities of both fermions have to be equal, �

1

= �
2

.
However, this condition makes the amplitude for the creation of the fermion pair by the axial
current equal to zero in the limit of massless fermions. On general grounds, this amplitude is
proportional to the fermion bilinear

out

hk
1

, �;k
2

, �|Jµ
A(0)|0iin

⇠ v(k
1

, �)�µ�
5

u(k
2

, �). (2.88)

In the limit of massless fermions, the helicities of the fermion and the antifermion tend respec-
tively to plus and minus the chirality, namely

lim
m!0

u(p,±1

2
) = u±(p), lim

m!0

v(p,±1

2
) = v⌥(p), (2.89)

so using

v⌥(k2

)�µ�
5

u±(k1

) = 0 (2.90)

we find the result

lim
m!0

out

hk
1

, �;k
2

, �|Jµ
A(0)|0iin

= 0. (2.91)

Interestingly, the second amplitude in (2.87) also vanishes in the massless limit as a conse-
quence of the conservation of chirality in the QED vertex. This follows from the general form
of the amplitude for the fermion-antifermion annihilation into two photons, which is given by

out

hp,�
1

;q,�
2

|k
1

, �;k
2

, �i
in

= �e2✏µ(p,�1

)✏⌫(k,�2

)

⇥v(k
2

, �)



�µ(/k
1

� /p+m)�⌫

(k
1

� p)2 � m2

+
�⌫(/k

2

� /q +m)�µ

(k
2

� q)2 � m2

�

u(k
1

, �). (2.92)

Focusing in the two numerators of this expression, and using (2.90), we find in the zero mass
limit the two terms in the amplitude are proportional to factors of the form

v⌥(k2

)�µ�↵�⌫u±(k) = 0. (2.93)

Then, our naive conclusion would be that the imaginary part of the triangle diagram vanishes
in the limit of massless fermions

lim
m!0

Im�µ↵�(p, q) = 0. (2.94)

26

we find

where �
1

, �
2

represent the helicities of the fermion-antifermion pair and we have introduced the
photon polarization vectors ✏↵(p,�1

) and ✏�(q,�2

).
We analyze now the conditions for the amplitude on the right-hand side of this equation

to be nonvanishing. The first thing to point out, is that the so-called Landau-Yang theorem
[6] forbids the decay of state with spin s = 1 into two on-shell photons. This means that the
fermion-antifermion intermediate state must have vanishing total spin and, as a consequence,
in the center of mass reference frame the helicities of both fermions have to be equal, �

1

= �
2

.
However, this condition makes the amplitude for the creation of the fermion pair by the axial
current equal to zero in the limit of massless fermions. On general grounds, this amplitude is
proportional to the fermion bilinear

out

hk
1

, �;k
2

, �|Jµ
A(0)|0iin

⇠ v(k
1

, �)�µ�
5

u(k
2

, �). (2.88)

In the limit of massless fermions, the helicities of the fermion and the antifermion tend respec-
tively to plus and minus the chirality, namely

lim
m!0

u(p,±1

2
) = u±(p), lim

m!0

v(p,±1

2
) = v⌥(p), (2.89)

so using

v⌥(k2

)�µ�
5

u±(k1

) = 0 (2.90)

we find the result

lim
m!0

out

hk
1

, �;k
2

, �|Jµ
A(0)|0iin

= 0. (2.91)

Interestingly, the second amplitude in (2.87) also vanishes in the massless limit as a conse-
quence of the conservation of chirality in the QED vertex. This follows from the general form
of the amplitude for the fermion-antifermion annihilation into two photons, which is given by

out

hp,�
1

;q,�
2

|k
1

, �;k
2

, �i
in

= �e2✏µ(p,�1

)✏⌫(k,�2

)

⇥v(k
2

, �)



�µ(/k
1

� /p+m)�⌫

(k
1

� p)2 � m2

+
�⌫(/k

2

� /q +m)�µ

(k
2

� q)2 � m2

�

u(k
1

, �). (2.92)

Focusing in the two numerators of this expression, and using (2.90), we find in the zero mass
limit the two terms in the amplitude are proportional to factors of the form

v⌥(k2

)�µ�↵�⌫u±(k) = 0. (2.93)

Then, our naive conclusion would be that the imaginary part of the triangle diagram vanishes
in the limit of massless fermions

lim
m!0

Im�µ↵�(p, q) = 0. (2.94)

26



M.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de Madrid

We turn now to the annihilation of the two fermions
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Interestingly, the second amplitude in (2.87) also vanishes in the massless limit as a conse-
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Focusing in the two numerators of this expression, and using (2.90), we find in the zero mass
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we conclude that the second amplitude also vanish in the massless limit

lim
m!0
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Thus, we would find that the amplitude approaches zero with the mass

Im�µ↵�(p, q) ⇠ 0
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Thus, the anomaly appears as an IR discontinuity of the imaginary part of 
the amplitude.

Im�
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(p+ q)2

⌘

Interestingly, this imaginary part in unambiguous.
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But not so fast…

In the massless limit, on-shell fermions can emit collinear on-shell photons, and 
the intermediate state can fall on-shell.

2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
α
V x1 J

β
V x2 0

d4p
2π 4

d4q
2π 4 iΓ

µαβ p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form

µ JµA x A
i
2

d4y1d4y2A α y1 A β y2 (2.24)

d4p
2π 4

d4q
2π 4 p q µiΓµαβ p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µΓµαβ p,q . The function iΓ p,q is given by
the two momentum space Feynman diagrams

iΓµαβ p,q

qβ

pα

p q µ

qβ

pα

p q µ (2.25)

whose contributions can be found using the Feynman rules of QED

iΓµαβ p,q e2
d4ℓ
2π 4 Tr

i
ℓ p iε

γµγ5
i

ℓ q iε
γα

i
ℓ iε

γβ

p q
α β

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches

The denominator then vanishes and we have an indeterminate limit.

That is why, being more careful we obtained:
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A two-dimensional excursion:	

the Schwinger model
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To keep things simple, we consider a massless Dirac fermion in 1+1 
dimensions, and compactify the spatial direction to a circle of length L. 

We consider the following representation of the Dirac matrices

The Dirac sea picture. The axial anomaly in two dimensions can be also obtained using a
Dirac sea analysis of the e↵ect of the external field on the vacuum of the theory [7]. We use
the following representation of the Dirac matrices

�0 ⌘ �
1

=

✓

0 1
1 0

◆

, �1 ⌘ i�
2

=

✓

0 1
�1 0

◆

. (2.131)

This is a chiral representation since the matrix �
5

is diagonal7

�
5

⌘ ��0�1 =

✓

1 0
0 �1

◆

, (2.132)

so we can write the two-component Dirac spinor  in terms a pair of Weyl spinors of opposite
chirality as

 =

✓

u
+

u�

◆

. (2.133)

In this representation, the field equations take the simple form

(@
0

� @
1

)u
+

= 0, (@
0

+ @
1

)u� = 0, (2.134)

whose general solution can be immediately written as

u
+

= u
+

(x0 + x1), u� = u�(x
0 � x1). (2.135)

These two solutions represent two wave packets moving along the spatial dimension respectively
to the left (u

+

) and to the right (u�). Notice that according to our convention the left-moving
u

+

is a right-handed spinor (positive helicity) whereas the right-moving u� is a left-handed
spinor (negative helicity). Taking this into account, the properly normalized wave functions for
free particles with well defined energy-momentum pµ = (E, p) are written as

v
(E)

± (x0 ± x1) =
1p
L
e�iE(x0±x1

) with p = ⌥E. (2.136)

As it is always the case with a relativistic wave equation we have found both positive and
negative energy solutions. For v

(E)

+

, since E = �p, we see that the solutions with positive
energy are those with negative momentum p < 0, whereas the negative energy solutions are
plane waves with p > 0. For the left-handed spinor u� the situation is reversed. Besides, since
the spatial direction is compact with length L the momentum p is quantized according to

p =
2⇡n

L
, n 2 Z. (2.137)
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the wave function for free fermions are
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) and to the right (u�). Notice that according to our convention the left-moving
u

+

is a right-handed spinor (positive helicity) whereas the right-moving u� is a left-handed
spinor (negative helicity). Taking this into account, the properly normalized wave functions for
free particles with well defined energy-momentum pµ = (E, p) are written as

v
(E)

± (x0 ± x1) =
1p
L
e�iE(x0±x1

) with p = ⌥E. (2.136)

As it is always the case with a relativistic wave equation we have found both positive and
negative energy solutions. For v

(E)

+

, since E = �p, we see that the solutions with positive
energy are those with negative momentum p < 0, whereas the negative energy solutions are
plane waves with p > 0. For the left-handed spinor u� the situation is reversed. Besides, since
the spatial direction is compact with length L the momentum p is quantized according to

p =
2⇡n

L
, n 2 Z. (2.137)
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and since the spatial direction is compatified, the momentum is quantized:

The Dirac sea picture. The axial anomaly in two dimensions can be also obtained using a
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This is a chiral representation since the matrix �
5

is diagonal7

�
5

⌘ ��0�1 =

✓

1 0
0 �1

◆

, (2.132)
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is a right-handed spinor (positive helicity) whereas the right-moving u� is a left-handed
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free particles with well defined energy-momentum pµ = (E, p) are written as
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As it is always the case with a relativistic wave equation we have found both positive and
negative energy solutions. For v

(E)

+

, since E = �p, we see that the solutions with positive
energy are those with negative momentum p < 0, whereas the negative energy solutions are
plane waves with p > 0. For the left-handed spinor u� the situation is reversed. Besides, since
the spatial direction is compact with length L the momentum p is quantized according to
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Figure 2: Spectrum of the massless two-dimensional Dirac field. We denote by v± the states
with dispersion relation E = ⌥p.

The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.
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The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
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. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.

33

(positive chirality, left movers) (negative chirality, right movers)

the spectrum is:
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To quantize the Dirac fermion, we construct firts the ground state of the 
theory by filling all negative energy states (Dirac sea) 

and expand:
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Figure 3: The two branches in the vacuum of the theory. The solid points represent the filled
negative energy states.

The massless theory
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is invariant under both U(1)
V

u± �! ei↵u±, (2.141)

and U(1)
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The corresponding Noether currents are
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whose conserved charges are
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Figure 2: Spectrum of the massless two-dimensional Dirac field. We denote by v± the states
with dispersion relation E = ⌥p.

The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.
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The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.
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The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.

33

 : annihilates a fermion with E > 0 and p = ± E

 : creates an antifermion with E > 0 and p = ∓ E 
     (i.e., annihilates a fermion with E < 0 and p = ± E)

where,
(∓ chirality)
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We look now at the classical symmetries of our theory
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Figure 3: The two branches in the vacuum of the theory. The solid points represent the filled
negative energy states.
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 �! ei↵ 

Axial U(1):

 �! ei��5 u± �! e±i�u±

whose associated Noether current is

Jµ
V =  �µ 
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Figure 3: The two branches in the vacuum of the theory. The solid points represent the filled
negative energy states.
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with

simplifies to

@� +

= 0, @
+

 � = 0. (2.107)

This little calculation shows a very important fact about chiral fermions in two dimensions:
positive and negative chirality fermions are identified with left- and right-movers. Since parity
reverses the sign of x1,

P : x± �! x⌥, (2.108)

it interchanges left- with right-movers and therefore positive with negative chirality spinors

P :  ± �!  ⌥. (2.109)

The axial anomaly. We study now the theory of a single massless Dirac spinor coupled to
an external potential A µ
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) and Jµ =  �µ . This action has an additional symmetry under global
U(1) axial transformations acting as

 �! ei��5 , � 2 R, (2.111)

which in terms of the two chiral spinors  ± it reads

 ± �! e±i� ±. (2.112)

By Noether’s theorem, associated with this invariance there is a conserved current
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Using light-cone coordinates, its components are
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whereas the classical conservation equation @µjAµ = 0 takes the form

@
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In the quantum theory, there is the possibility that this conservation equation is violated.
To see if this is the case, we begin by defining the vacuum expectation value of the operator
j±(x) in the background of the external field A (x). At one-loop order, this is given by
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the corresponding conserved charges are
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Figure 3: The two branches in the vacuum of the theory. The solid points represent the filled
negative energy states.
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where e is the charge of the fermions. Since we assumed that the vector potential varies
adiabatically, we can take it to be approximately constant at each time.

Now we have to understand the e↵ect on the vacuum depicted in Fig. 3 of switching on the
vector potential. Increasing adiabatically A 1 results, according to Eq. (2.148), in decreasing
the momentum of the state. What happens to the energy depends on whether we consider
states with dispersion relation E = �p (the branch v
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The result is that the two branches move as shown in Fig. 4. Some of the negative energy
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branch acquire positive energy while the same number of the empty positive
energy states of the other branch v� sink into empty negative energy states. Physically this
means that the external electric field E creates a number of particle-antiparticle pairs out of
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We have to count the number of such pairs created by the electric field after a time ⌧
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In the free theory, both charges are conserved… but what about switching an 
external electrical field?

We do it adiabatically. In the              gauge 
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Adiabaticity allows to treat the system at each instant as “time independent”.
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Therefore we conclude that the coupling to the electric field produces a violation in the con-
servation of the axial charge per unit time given by

Q̇
A

=
e

⇡
EL. (2.151)

This result translates into a nonconservation of the axial vector current

@µJ
µ
A

=
e~
⇡

E , (2.152)

where we have restored ~ to make clear that we are dealing with a quantum e↵ect. In addition,
the fact that �Q

V

= 0 guarantees that the vector current remains conserved also quantum
mechanically, @µJ

µ
V

= 0.

Infrared interpretation. One of the distinctive features of the axial anomaly in two dimen-
sions is that it is a purely infrared e↵ect. This contrast with the result in four dimensions,
where the anomaly has both infrared and ultraviolet interpretations.
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while some occupied negative energy states with 
positive chirality get positive energy (positive 
chirality fermions)
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We have found that, in the presence of an external electric field, there is a 
violation in the conservation of the axial current. 
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N =
L

2⇡
eE ⌧0

Its rate of variation is

Q̇A =
QA(⌧0)

⌧0
=

e

⇡
LE

This implies a violation in the conservation of the axial current

@µJ
µ
A =

e

⇡
E

which gives the value of the axial anomaly in the Schwinger model:

@µhJµ
A(x)iA =

e

2⇡
✏

µ⌫Fµ⌫(x)
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The anomaly in the massless Schwinger model has surprising consequences…

In fact, in two dimensions the vector and axial-vector currents are closely 
related.

�5 = ��0�1 �µ�5 = ✏µ⌫�⌫

Hence, 

J

µ
A(x) = ✏

µ⌫
JVµ(x)

Thus the anomaly can be recast in terms of the vector current as

✏

µ⌫
@µhJV⌫(x)iA =

e

2⇡
✏

µ⌫Fµ⌫(x) =
e

⇡

✏

µ⌫
@µA⌫(x)
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In addition, the vector current has to satisfy the Maxwell equations

@µFµ⌫(x) = �ehJ⌫
V (x)iA ⇤A ⌫(x)� @

⌫
@µA µ(x) = �ehJ⌫

V(x)iA

✏

µ⌫
@µhJV⌫(x)iA =

e

2⇡
✏

µ⌫Fµ⌫(x) =
e

⇡

✏

µ⌫
@µA⌫(x)

Defining the pseudoscalar field                                          the two equations 
combine into:

Following the same steps, we also arrive at

U��(p) ⌘ J�(p) J�(�p)=
i

2⇡

p�
p

+

. (2.124)

Then, transforming the result back to position space, we find that the axial current su↵ers from
an anomaly given by

@µhJµ
A

(x)iA =
e

2⇡
F

+� =
e

4⇡
✏µ⌫Fµ⌫ . (2.125)

The existence of the axial anomaly in two dimensions has important physical consequences.
The vacuum expectation value of the gauge current acts as a source for the electromagnetic
field strength Fµ⌫ , as dictated by the Maxwell equations

@µF
µ⌫(x) = hJ⌫(x)iA . (2.126)

Using Eq. (2.103), it is easy to prove the identity

�µ�
5

= �✏µ⌫�⌫ , (2.127)

that implies that the vector and axial currents are related by the duality relation

J
Aµ(x) = �✏µ⌫J

⌫(x). (2.128)

Due to this identity, we can recast the anomaly equation (2.125) in terms of the vector current
as

✏µ⌫h@µJ⌫(x)iA = � e2

4⇡
✏µ⌫Fµ⌫(x). (2.129)

Using this, the equation of motion (2.126) reduce to the massive Klein-Gordon equation for the
pseudoscalar field F ⇤ ⌘ 1

2

✏µ⌫F µ⌫ = ✏µ⌫@µA⌫

✓

⇤+
e2

2⇡

◆

F ⇤(x) = 0. (2.130)

This short calculation shows how the axial anomaly results in a dynamical generation of a
mass in a parity-invariant theory without any mass term. This is achieved without breaking
Lorentz or gauge invariance. This massive pseudoscalar field corresponds to the single excitation
of a photon in two dimensions6. This mechanism can be thought of as a two-dimensional toy
version of technicolor, where the two-dimensional technifermions disappear to generate, through
the axial anomaly, a mass term for the gauge field. Unfortunately, this simple mechanism does
not work in four-dimensions, where the only known way to generate gauge field mass terms
while preserving gauge invariance is through the Higgs mechanism.

6In more technical terms, the two-dimensionsl gauge field Aµ can be decomposed as Aµ = @µ⌘ + ✏µ⌫@

⌫
⌘

0.
The first piece is a pure gauge, where the second one is the pseudoscalar degree of freedom.

31

✓
⇤+

e2

⇡

◆
F ⇤ = 0

This means that the Schwinger model contains a propagating mode with mass

m2 =
e2

⇡
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What is this mode? Let’s remember than in two dimensions, a vector can be 
decomposed as

Aµ = @µ⌘ + ✏µ⌫@
⌫⌘0

Due to the interaction with the fermions, the pseudoscalar mode acquires a 
mass. 

The 2D Dirac fermion works like a “technifermion” which combine to 
produce a massive photon.

Unfortunately, this only works in 2D!
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What is this mode? Let’s remember than in two dimensions, a vector can be 
decomposed as

Aµ = @µ⌘ + ✏µ⌫@
⌫⌘0

pure gauge pseudoscalar

Due to the interaction with the fermions, the pseudoscalar mode acquires a 
mass. 

The 2D Dirac fermion works like a “technifermion” which combine to 
produce a massive photon.

Unfortunately, this only works in 2D!
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The Dirac-sea picture of the anomaly in the Schwinger model underlines its IR 
character

The anomaly it is determined by a number of states crossing the E = 0               
Fermi level
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Including non-Abelian fields: 	

the singlet anomaly
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Instead of QED, we consider now a fermion coupled (in a certain 
representation) to an external non-Abelian gauge theory

Classically, the gauge current                          satisfies the conservation equation

In addition we also have global axial transformations

 �!  ei��5 �! ei��5 

S =

Z
d

4
x

⇣
i �

µ
@µ �m  + g T

a
R�

µ
 A a

µ

⌘

while its associated singlet axial current                        satisfies the identityJµ
A =  �µ�5 

@µJ
µ
A = 2im  

Jµa
V =  �µT a

R 

(DµJ
µ
V)

a = 0 @µJ
µa
V + gfabcA b

µJ
µc
V = 0
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Similarly to QED, the calculation of the axial anomaly boils down to computing

Diagrammatically, we have again two triangle diagrams, these time with gauge 
group generators on the “vector” vertices

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of

11
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I(⇠) =
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11

+�ij �ij

i

j

k

i

j

k

(T a
R)ik

(T a
R)kj(T b

R)kj

(T b
R)ik

The two diagrams share the same color factor

Tr (T a
RT b

R) = Tr (T b
RT a

R)

@

µ

hJµ

A(x)iA = �g

2

2

Z
d

4
y1d

4
y2@

(x)
µ

h0|T [Jµ

A(x)J
↵a

V (y1)J
�b

V (y2)]|0iA a

↵

(y1)A
b

�

(y2) + . . .
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The rest of the calculation is identical to the case of QED. Using a gauge 
invariant regulator, we get in momentum space

(p+ q)µi�ab
µ↵�(p, q) =

ig2

2⇡2
Tr (T a

RT b
R)✏↵��⌫p

�q⌫ + 2mi�ab
↵�(p, q)

Adding the external gauge fields and Fourier transforming back to position 
space, this leads to

The problem with this result is that it is not gauge invariant!

@µhJµ
A(x)iA =

g

2

4⇡2
✏

µ⌫↵�Tr (T a
RT

b
R)@µA a

⌫ @↵A b
� =

g

2

4⇡2
✏

µ⌫↵�Tr (T a
RT

b
R)@µ

⇣
A a

⌫ @↵A b
�

⌘

@µhJµ
A(x)iA =

g

2

4⇡2
✏

µ⌫↵�
@µTr

⇣
A⌫@↵A�

⌘

@

µ

hJµ

A(x)iA = �g

2

2

Z
d

4
y1d

4
y2@

(x)
µ

h0|T [Jµ

A(x)J
↵a

V (y1)J
�b

V (y2)]|0iA a

↵

(y1)A
b

�

(y2) + . . .
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In fact, in the case of the singlet anomaly the triangle diagram is not enough.

We need to compute the box diagrams as well:

+ permutations

44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can
be written as

µ

Jµ

A x A
1

4p

2 e

µnsl

µ

A
n s

A
l

2
3
A

n

A
s

A
l

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that
we see that the right-hand side contains terms with two and three gauge fields. This
means that, diagrammatically, the computation of the anomalous divergences of the
single axial-vector current requires not only the evaluation of the triangle diagram
(associated with the term with two gauge fields), but also the square diagram with
one axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-
tion of the square diagram does not mean much extra work. Its contribution is fixed
by the triangle diagram since the coefficient of the cubic term in the Chern-Simons
form is fully determined by gauge invariance.
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Á

lv
ar

ez
-G

au
m

é
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In computing the axial-vector Ward identity                              we encounter 
the trace

kµi�
µ↵��(k, p1, p2)

Tr

✓
k/�5

i

/̀� k/�m+ i✏
�↵ i

/̀� p/1 � p/2 �m+ i✏
�� i

/̀� p/1 �m+ i✏
�� i

/̀�m+ i✏

◆

that we rewrite using 

k/�5 = �5(/̀� k/�m) + (/̀�m)�5 + 2m�5

The first two terms cancel one propagator each, while the last one effectively 
replaces the axial-vector current by the pseudoscalar bilinear.

i

/̀�m+ i✏
k/�5

i

/̀� k/�m+ i✏

=
i

/̀�m+ i✏
�5 + �5

i

/̀� k/�m+ i✏
+ 2m

i

/̀�m+ i✏
�5

i

/̀� k/�m+ i✏
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44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can
be written as

µ

Jµ

A x A
1

4p

2 e

µnsl

µ

A
n s

A
l

2
3
A

n

A
s

A
l

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that
we see that the right-hand side contains terms with two and three gauge fields. This
means that, diagrammatically, the computation of the anomalous divergences of the
single axial-vector current requires not only the evaluation of the triangle diagram
(associated with the term with two gauge fields), but also the square diagram with
one axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-
tion of the square diagram does not mean much extra work. Its contribution is fixed
by the triangle diagram since the coefficient of the cubic term in the Chern-Simons
form is fully determined by gauge invariance.
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Á

lv
ar

ez
-G

au
m

é
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44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can
be written as

µ

Jµ

A x A
1

4p

2 e

µnsl

µ

A
n s

A
l

2
3
A

n

A
s

A
l

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that
we see that the right-hand side contains terms with two and three gauge fields. This
means that, diagrammatically, the computation of the anomalous divergences of the
single axial-vector current requires not only the evaluation of the triangle diagram
(associated with the term with two gauge fields), but also the square diagram with
one axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-
tion of the square diagram does not mean much extra work. Its contribution is fixed
by the triangle diagram since the coefficient of the cubic term in the Chern-Simons
form is fully determined by gauge invariance.
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2
The
A
xialA
nom
aly

The
right-hand
side
ofthisanom
aly
equation
isin
facta
totalderivative,thatcan

be
w
ritten
as
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A
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The
term
inside
the
bracketis
the
C
hern-Sim
ons
form
.The
im
portantthing
is
that

w
e
see
thatthe
right-hand
side
contains
term
s
w
ith
tw
o
and
three
gauge
fields.This

m
eansthat,diagram
m
atically,the
com
putation
ofthe
anom
alousdivergencesofthe

single
axial-vector
currentrequires
notonly
the
evaluation
of
the
triangle
diagram

(associated
w
ith
the
term
w
ith
tw
o
gauge
fields),butalso
the
square
diagram
w
ith

one
axial-vectorand
three
vectorcurrentinsertions

perm
utations

(2.134)

In
fact,ifw
e
w
antto
com
pute
the
anom
aly
using
Feynm
an
diagram
s,the
introduc-

tion
ofthe
square
diagram
does
notm
ean
m
uch
extra
w
ork.Its
contribution
is
fixed

by
the
triangle
diagram
since
the
coefficientofthe
cubic
term
in
the
C
hern-Sim
ons

form
is
fully
determ
ined
by
gauge
invariance.
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44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can
be written as

µ

Jµ

A x A
1

4p

2 e

µnsl

µ

A
n s

A
l

2
3
A

n

A
s

A
l

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that
we see that the right-hand side contains terms with two and three gauge fields. This
means that, diagrammatically, the computation of the anomalous divergences of the
single axial-vector current requires not only the evaluation of the triangle diagram
(associated with the term with two gauge fields), but also the square diagram with
one axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-
tion of the square diagram does not mean much extra work. Its contribution is fixed
by the triangle diagram since the coefficient of the cubic term in the Chern-Simons
form is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.
2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0
gg in the sigma model, Nuovo Cim. A60

(1969) 47.
3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.
4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.
K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-
trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.
42 (1979) 1195.
K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848
[Erratum-ibid. D22 (1980) 1499].
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Á

.
V

áz
qu

ez
-M

oz
o,

An
In

vi
ta

tio
n

to
Q

ua
nt

um
Fi

el
d

Th
eo

ry
,

Sp
rin

ge
rV

er
la

g
20

12
.

`

`� k
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= + +

The last term contributes to                 , whereas the first two “triangles” give 
corrections to the anomaly cubic in the external field.

2imh  iA

This combines with the triangle diagram to give the singlet anomaly:

@µhJµ
A(x)iA =

g

2

4⇡2
✏

µ⌫↵�
@µTr

✓
A⌫@↵A� +

2

3
A⌫A↵A�

◆

i

/̀�m+ i✏
k/�5

i

/̀� k/�m+ i✏

=
i

/̀�m+ i✏
�5 + �5

i

/̀� k/�m+ i✏
+ 2m

i

/̀�m+ i✏
�5

i

/̀� k/�m+ i✏

Diagrammatically,
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The right-hand side of this anomaly equation is in fact a total derivative, that can
be written as

µ

Jµ

A x A
1

4p

2 e

µnsl

µ

A
n s

A
l

2
3
A

n

A
s

A
l

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that
we see that the right-hand side contains terms with two and three gauge fields. This
means that, diagrammatically, the computation of the anomalous divergences of the
single axial-vector current requires not only the evaluation of the triangle diagram
(associated with the term with two gauge fields), but also the square diagram with
one axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-
tion of the square diagram does not mean much extra work. Its contribution is fixed
by the triangle diagram since the coefficient of the cubic term in the Chern-Simons
form is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.
2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0
gg in the sigma model, Nuovo Cim. A60

(1969) 47.
3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.
4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.
K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-
trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.
42 (1979) 1195.
K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848
[Erratum-ibid. D22 (1980) 1499].
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44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can
be written as
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A x A
1
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µnsl

µ

A
n s

A
l
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. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that
we see that the right-hand side contains terms with two and three gauge fields. This
means that, diagrammatically, the computation of the anomalous divergences of the
single axial-vector current requires not only the evaluation of the triangle diagram
(associated with the term with two gauge fields), but also the square diagram with
one axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-
tion of the square diagram does not mean much extra work. Its contribution is fixed
by the triangle diagram since the coefficient of the cubic term in the Chern-Simons
form is fully determined by gauge invariance.
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aly

The
right-hand
side
ofthisanom
aly
equation
isin
facta
totalderivative,thatcan

be
w
ritten
as
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The
term
inside
the
bracketis
the
C
hern-Sim
ons
form
.The
im
portantthing
is
that

w
e
see
thatthe
right-hand
side
contains
term
s
w
ith
tw
o
and
three
gauge
fields.This

m
eansthat,diagram
m
atically,the
com
putation
ofthe
anom
alousdivergencesofthe

single
axial-vector
currentrequires
notonly
the
evaluation
of
the
triangle
diagram

(associated
w
ith
the
term
w
ith
tw
o
gauge
fields),butalso
the
square
diagram
w
ith

one
axial-vectorand
three
vectorcurrentinsertions

perm
utations

(2.134)

In
fact,ifw
e
w
antto
com
pute
the
anom
aly
using
Feynm
an
diagram
s,the
introduc-

tion
ofthe
square
diagram
does
notm
ean
m
uch
extra
w
ork.Its
contribution
is
fixed

by
the
triangle
diagram
since
the
coefficientofthe
cubic
term
in
the
C
hern-Sim
ons

form
is
fully
determ
ined
by
gauge
invariance.
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44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can
be written as

µ

Jµ

A x A
1

4p

2 e

µnsl

µ

A
n s

A
l

2
3
A

n

A
s

A
l

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that
we see that the right-hand side contains terms with two and three gauge fields. This
means that, diagrammatically, the computation of the anomalous divergences of the
single axial-vector current requires not only the evaluation of the triangle diagram
(associated with the term with two gauge fields), but also the square diagram with
one axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-
tion of the square diagram does not mean much extra work. Its contribution is fixed
by the triangle diagram since the coefficient of the cubic term in the Chern-Simons
form is fully determined by gauge invariance.
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6. L. Álvarez-Gaumé and M. Á. Vázquez-Mozo, An Invitation to Quantum Field Theory,
Springer Verlag 2012.

`

`� p1

`� p1 � p2

44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can
be written as

µ

Jµ

A x A
1

4p

2 e

µnsl

µ

A
n s

A
l

2
3
A

n

A
s

A
l

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that
we see that the right-hand side contains terms with two and three gauge fields. This
means that, diagrammatically, the computation of the anomalous divergences of the
single axial-vector current requires not only the evaluation of the triangle diagram
(associated with the term with two gauge fields), but also the square diagram with
one axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-
tion of the square diagram does not mean much extra work. Its contribution is fixed
by the triangle diagram since the coefficient of the cubic term in the Chern-Simons
form is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.
2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0
gg in the sigma model, Nuovo Cim. A60

(1969) 47.
3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.
4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.
K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-
trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.
42 (1979) 1195.
K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848
[Erratum-ibid. D22 (1980) 1499].
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é
an

d
M

.
Á
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The last term contributes to                 , whereas the first two “triangles” give 
corrections to the anomaly cubic in the external field.

2imh  iA

This combines with the triangle diagram to give the singlet anomaly:
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Diagrammatically, “seagull” vertices (two momenta)
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It is important to stress that although there is contribution to the anomaly 
from the box diagram, its coefficient is determined by the triangle diagram
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Here we identify the Chern-Simons form,

so the singlet anomaly can be written as

which is gauge invariant.
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