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To provide the temperature dependence of the saturated 
pressure, P, of a fluid along the liquid–vapor coexistence curve, 
most chemistry and physics textbooks use the Clausius–
Clapeyron equation (1–8) 
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where P0 and T0 are the vapor pressure and the absolute tem-
perature of a reference point in the coexistence curve and A is 
a constant characteristic of the substance. Equation 1 is usually 
derived from integration of the Clapeyron equation for vapor-
ization,
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under the following assumptions: (i) the molar enthalpy (latent 
heat) of vaporization is constant (∆vapH— ≈ constant), (ii) the 
molar volume of the liquid is negligible respect to the molar 
volume of the vapor (V— l << V—v), and (iii) the vapor behaves as 
an ideal gas (V—v ≈ RT∙P). These are reasonably good approxi-
mations at low temperatures where the vapor pressure is small.

Surprisingly, the Clausius–Clapeyron equation, eq 1, is 
able to predict the vapor pressure of some fluids along the entire 
coexistence curve with good accuracy, even near the critical 
point where the approximations made for integration of eq 2 
are not valid. To understand this fact it is convenient to use the 
compressibility factor Z = PV—∙RT and to rewrite the Clapeyron 
equation (eq 2) as 

	
lnP

T1
d

d
vap

vap

H
R Z

	 (3)

where ∆vapZ is the difference between the compressibilities of 
the vapor and liquid phases. Far enough from the critical point 
the above mentioned approximations hold, so that ∆vapZ ≈ 1 
and ∆vapH— ≈ constant, and integration of eq 3 leads to eq 1. 
Furthermore, although ∆vapH— and ∆vapZ are dependent on 
the temperature, owing to a compensating effect, the ratio 
∆vapH—∙∆vapZ in eq 3 is constant for some substances over the 
entire temperature range from the triple point to the critical 
point. Then, by assuming that the right-hand side of eq 3 is 
constant, integration of this equation, by using the critical point 
as reference, yields (9) 
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where Pr = P∙Pc and Tr = T∙Tc, with Pc and Tc being the criti-
cal pressure and the critical temperature, respectively, and h is a 
constant characteristic of the substance. Although eqs 1 and 4 
provide the natural logarithm of the vapor pressure as a linear 
function of 1∙T, we remark that they have been obtained by 
using different approximations.

For a given substance, the value of the parameter h in eq 
4 can be calculated by fitting a set of experimental vapor pres-

sure data between the triple point temperature and the critical 
temperature. In particular, Guggenheim proposed the empirical 
equation (10–12) 
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on the basis of the study of the behavior of the vapor pressure 
of seven fluids: argon (Ar), krypton (Kr), xenon (Xe), carbon 
monoxide (CO), nitrogen (N2), methane (CH4), and oxygen 
(O2). Equation 5 is usually considered as an example of the law 
of corresponding states: different fluids obey the same equation 
in terms of the reduced variables Pr and Tr. However, the value 
h = 5.4 was obtained for a particular set of simple fluids (those 
with zero or small molecular dipole moments), so that it does 
not have a universal character.

In this article we present a universal form for the Clausius–
Clapeyron vapor pressure equation without an adjustable param-
eter. The proposed equation is based on the use of dimensionless 
variables reduced by using both triple point and critical point 
coordinates. This can be convenient, for example, to analyze the 
deviations of experimental vapor pressure data with respect to 
the Clausius–Clapeyron equation. In this context, we also pro-
pose a simple correction to the universal Clausius–Clapeyron 
equation consistent with the renormalization group theory of 
critical phenomena. The proposed vapor pressure equation con-
tains only one empirical parameter that is calculated using the 
acentric point as reference. We then check whether the proposed 
equation provides a good prediction for the vapor pressure of the 
Guggenheim fluids and also of more complex fluids.

Universal Form of the Clausius–Clapeyron Equation

The liquid–vapor coexistence curve extends from the triple 
point to the critical point. Experimentally, near the critical point 
the main difficulties arise from the divergence of several prop-
erties, while near the triple point the difficulties arise from the 
measurement of low vapor pressures. In spite of these difficulties, 
triple point and critical point coordinates are tabulated for many 
fluids. If the triple point pressure, Pt, and the triple point tem-
perature, Tt, are known, the triple point can be used, together 
with the critical point, as a reference in the study of  vapor pres-
sure equations. In particular, they can be used to calculate the 
parameter h in eq 4. By imposing that eq 4 passes through the 
triple point, one obtains 
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where Trt = Tt∙Tc, and Prt = Pt∙Pc are the reduced triple point 
temperature and pressure, respectively. By substituting eq 6 into 
eq 4, one can rewrite the Clausius–Clapeyron equation as 
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This equation suggests the definition of a dimensionless variable 
ϕ, related to both the reduced temperature and the reduced 
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vapor pressure by 
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and a dimensionless temperature t by
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The use of the new variables ϕ and t allows one to write the 
Clausius–Clapeyron equation, eq 7, in the simple form, 

	 t= 	 (10)

We note that, for any fluid, the values of the dimensionless tem-
perature t range between the triple point value, tt = 1, and the criti-
cal point value, tc = 0. In a similar way, the dimensionless variable 
ϕ is normalized in the sense that its maximum value is reached at 
the triple point, ϕt ≡ ϕ(1) = 1, while its minimum value is reached 
at the critical point, ϕc ≡ ϕ(0) = 0. Thus, eq 10 can be considered 
as a universal form of the Clausius–Clapeyron equation not 
only because it does not depend on any adjustable parameter (in 
contrast to eq 4 that includes the parameter h), but also because 
variables ϕ and t range between 0 and 1 for all fluids.

Therefore, the (t, ϕ) diagram provides a universal framework 
to represent the whole coexistence curve, from the triple point (1, 
1) to the critical point (0, 0), for any fluid. In this diagram one 
can appreciate the deviations of the experimental vapor pressure 
with respect to the Clausius–Clapeyron equation, eq 10. A plot 
of ϕ(t) versus t for the seven Guggenheim fluids is shown in Figure 
1. The symbols are experimental values of ϕ(t) calculated from the 
vapor pressure data provided by the NIST program (13) for these 
fluids, whereas the solid line is the linear equation 10. The triple 
point and critical point coordinates used in the calculations are 
given in Table 1. From Figure 1, one can see that the Guggenheim 
fluids seem to verify eq 10 rather satisfactorily and that the larger 
deviations are presented by oxygen.

To quantify the deviations between theory and the ex-
perimental vapor pressure data, we took N = 99 data for each 
substance between t0 = 0 (critical point) and t100 = 1 (triple 
point) with ∆t ≡ ti − ti−1 = 0.01 (i = 1, …, N ) and calculated 
the average absolute relative deviation (AARD) 
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where Pr i
(calc) = Pr(ti) is the value calculated from the theoretical 

equation and Pr i
(exp) denotes the corresponding experimental 

value. Taking into account eq 9 one has Tr = 1 − (1 − Trt)t, 
so that in terms of the dimensionless temperature t the vapor 
pressure values provided by the Guggenheim equation, eq 5, 

Figure 1. Dimensionless variable ϕ versus dimensionless temperature 
t for the Guggenheim fluids. The symbols represent NIST data (13) 
whereas the solid line represents the universal form of the Clausius–
Clapeyron equation, eq 10.
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Table 1. Values of the Triple Point Coordinates, Tt and Pt, the Critical Point Coordinates, Tc and Pc,  
the Acentric Factor, ω, and the Reduced Triple Point Pressure, Prt = Pt/Pc 

a

Fluid Tt/K Pt/Pa Tc/K Pc/MPa ω Prt c1
b

Ar 83.8058 68891 150.687 4.8630 –0.00219 1.417 × 10–2 0.169443

Xe 161.4 81748 289.733 5.8420 0.00363 1.399 × 10–2 0.142974

Kr 115.77 73503 209.48 5.5250 –0.0009 1.330 × 10–2 0.192579

CO 68.16 15537 132.86 3.4935 0.050 4.447 × 10–3 –0.342360

N2 63.151 12520 126.192 3.3958 0.0372 3.687 × 10–3 –0.209027

CH4 90.6941 11696 190.564 4.5992 0.01142 2.543 × 10–3 0.042520

O2 54.361 146.28 154.581 5.0430 0.0222 2.901 × 10–5 –0.779429

NH3 195.495 6091.2 405.40 11.3330 0.25601 5.375 × 10–4 –1.09325

CF4 98.94 641.44 227.51 3.7500 0.1785 1.711 × 10–4 –1.43601

H2O 273.16 611.65 647.096 22.0640 0.3443 2.772 × 10–5 –1.57911

C2HCl2F3 166.0 4.2021 456.831 3.6618 0.28192 1.148 × 10–6 –3.28415

C10H22 243.5 1.4042 617.7 2.1030 0.488 6.677 × 10–7 –3.95301

C7H16 182.55 0.17549 540.13 2.7360 0.349 6.414 × 10–8 –4.03830

C6H14
c 120.6 0.000011162 497.7 3.0400 0.280 3.672 × 10–12 –5.27889

aData are taken from ref 13. The shaded region indicates the Guggenheim fluids.  bThe last column shows the values of the parameter c1 given by 
eq 36 and used in the vapor pressure eq 39.  cThe chemical formula of 2-methylpentane is represented by the abbreviated form C6H14.
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are calculated by
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while, from eqs 8, 9, and10, the vapor pressure values are cal-
culated by 
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The AARDs for the seven Guggenheim fluids evaluated using 
eqs 12 and 13 are listed in Table 2. As can be seen, when eq 12 
is used the AARD is less than a 2% for Ar, Xe, Kr, and CH4 
but it is significantly larger for N2 (~8%), CO (~11%), and 
O2 (~10%). However, when eq 13 is used the AARDs for all 
Guggenheim fluids are below a 2%, except for O2, which reaches 
~7%. These quantitative results are in agreement with the devia-
tions observed in Figure 1.

 Why does oxygen result in a deviation of experimental 
values of Pr, calculated with eq 13, larger than those observed for 
the six remaining Guggenheim fluids? To answer to this ques-
tion it seems relevant to analyze what factors could influence 
such deviations. A first candidate is the so-called acentric factor 
(14–16) that is widely used to describe deviations of thermo-
dynamic quantities from the law of corresponding states. This 
factor was defined by Pitzer as (17, 18) 

	 1 10logg Pr 	 (14)

where Prω is the reduced vapor pressure at a reduced temperature 
Tr = 0.7, that is, Prω = Pr(Tr = 0.7). The values of ω, taken from the 
NIST program (13), for the Guggenheim fluids are listed in Table 
1. From these values and the values of the AARD given in Table 
2 one could conclude that a fluid with a small value of ω presents 
small deviations between experimental values of Pr and the behavior 
prescribed by eq 13. However, this is not the case for oxygen with 
a value of ω smaller than those for N2 and CO but with a larger 

Figure 2. Dimensionless variable ϕ versus dimensionless temperature t 
for (A) ammonia, water, and heptane and (B) CF4, C2HCl2F3, decane, 
and 2-methylpentane. The symbols represent NIST data (13), the 
dashed lines represent the Clausius–Clapeyron equation, eq 10, and 
the solid lines represent eq 39 with values of parameter c1 calculated 
from the acentric factor (see Table 1). The insets show the difference 
ϕexp – ϕcal, where the subscripts exp and cal represent the NIST data 
and the corresponding calculated values.
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Table 2. Absolute Average Relative Deviation, AARD, of Vapor 
Pressure Predictions by Different Equations for the Fluids of Table 1

Fluid 
AARD

eq 12 eq 13 eq 39

Ar  1.94  1.49  1.11 
Xe  1.51  1.45  1.15 

Kr  1.96  1.64  1.18 

CO  11.0  1.76  1.22 

N2  8.00  1.55  1.30 

CH4  1.61  1.52  1.52 

O2  9.95  7.19  2.91 

NH3  103  6.56  1.01 

CF4  84.1  9.27  1.70 

H2O  297  12.2  1.41 

C2HCl2F3  550  26.0  1.60 

C10H22  2330  31.1  0.69 

C7H16  2100  33.5  1.53 
C6H14  27500  46.5  2.83 

Note: The shaded region indicates the Guggenheim fluids.

value of the AARD. A possible explanation for this can be found 
in the data reported in Table 1 for the triple point and critical point 
coordinates. These values are similar for the seven fluids except for 
the value corresponding to the triple point pressure for the oxygen, 
which is much smaller. Therefore, the second factor we consider in 
our analysis is the reduced triple point pressure, Prt, as a measure 
of the distance between the triple point and the critical point. The 
values of Prt for the Guggenheim fluids are reported in Table 1. One 
can see that this value for the oxygen is about two orders of magni-
tude smaller than the values for the remaining Guggenheim fluids. 
Thus, we conclude that the smaller the value of Prt is, the larger the 
deviation of experimental Pr is with respect to value predicted by 
eq 13 or, equivalently, by eq 10.

To check the suggested influence of ω and Prt on the 
AARD we now consider a new set of seven fluids not studied 
by Guggenheim: ammonia (NH3), refrigerant R14 (CF4), water 
(H2O), refrigerant R123 (C2HCl2F3), decane (C10H22), heptane 
(C7H16), and 2-methylpentane (C6H14). A plot of ϕ(t) versus t 
for these fluids is shown in Figure 2. The experimental values of 
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ϕ(t) were calculated from the vapor pressure data provided by 
the NIST program (13) for the fluids using the triple point and 
critical point coordinates given in Table 1. From Figure 2, one 
can see that the experimental values of ϕ(t) deviate appreciably 
from the linear eq 10 (dashed lines in Figure 2). Now (see Table 
2) eq 12 predicts vapor pressures with an AARD between ~84% 
for CF4 to ~27500% for 2-methylpentane, thus indicating that 
these seven fluids are not Guggenheim fluids in the sense that 
the value of 5.4 in eq 5 does not fit the experimental vapor pres-
sure data for the fluids. However, eq 13 predicts vapor pressures 
with an AARD between 6.6% for ammonia to ~46.5% for 
2-methylpentane, in agreement with the deviations observed 
in Figure 2. The values of ω and Prt for these fluids are also re-
ported in Table 1. One can see that, in general, the ability of the 
Clausius–Clapeyron equation in the form eq 10 (or eq 13) to 
predict vapor pressures increases as the acentric factor decreases 
and the reduced triple point pressure increases, improving in 
all cases the predictions of the Guggenheim equation, eq 5 (or 
eq 12). But it should be remarked that while the Guggenheim 
equation, eq 5, only needs Tc and Pc as input data, eq 10 also 
needs Tt and Pt as input data.

A Simple Correction to the Clausius–Clapeyron  
Equation

From definitions eqs 8 and 9, the natural logarithm of the 
vapor pressure can be written in terms of the dimensionless 
temperature t as 

	 ln
ln

P
T P

T t
tr

rt1 1
r rt t 	 (15)

where the function ϕ(t) must verify the conditions ϕ(0) = 0 and 
ϕ(1) = 1. Taking into account eq 10, the following expression 
is proposed for the dimensionless variable ϕ as a function of the 
dimensionless temperature t, 

	 t t f t 	 (16)

where the function f (t) provides the deviation of the saturated 
vapor pressure with respect to the behavior predicted by the 
Clausius–Clapeyron equation, eq 10. Since ϕ(1) = 1,  f (t) must 
verify the condition 

	 f 1 1	 (17)

Furthermore, since ϕ(0) = 0,  f (t) presents an indeterminate 
form 0∙0 at t = 0. Then, using the L’Hôpital rule one obtains 

	 f t
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where ϕ′(t) = dϕ(t)∙dt. From definitions eqs 8 and 9, one has
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Then, taking into account that at t = 0 (critical point) one has 
Tr = 1 and Pr = 1 and eqs 18 and 19 yield 
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where αc = (dPr∙dTr)Tr=1 is the so-called Riedel factor that 
gives the slope of the reduced vapor pressure curve Pr(Tr) at the 
critical point (19, 20).

To propose a form for the deviation function f (t) we write 
this function as

	 =f t f t f tt c 	 (21)

where  ft(t) describes the behavior in the vicinity of the triple 
point while  fc(t) accounts for the behavior near the critical 
point. The contribution  ft(t) can be formally expanded in pow-
ers of (1− t), 

	 0f t at a ti
i

i
1

1
	 (22)

On the other hand, the expression for ϕ(t) must incorporate 
the singular behavior of the vapor pressure near the critical 
point tc = 0. Therefore, we propose the following series for the 
contribution  fc(t) in eq 21 

	 f t b b ti
ni

i
0

1
c 	 (23)

where the exponents ni (n1 < n2 < …) must be consistent with 
extended thermodynamics scaling for the vapor pressure around 
the critical point (21). In particular, as one approaches the 
critical point, renormalization group theory establishes that 
the second derivative of the vapor pressure with respect to the 
temperature diverges following the scaling law (22)
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where α = 0.11 is the universal critical exponent for the heat 
capacity at constant volume. Since Pr and dPr∙dTr remain finite 
at the critical point, scaling law, eq 24, implies that
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when Tr approaches 1 (critical point). Taking into account the 
condition of critical point, ln Pr = 0 at Tr = 1, integrating eq 
25 twice yields 

	 r r r1 2
21 1ln P A T A T 	 (26)

near the critical point. On the other hand, near the critical point 
(t = 0) one can approach ϕ(t) ≈ t fc(t). Then, using eqs 15 and 
23, near the critical point one can write 

	 r r t r tln lnP T P b t b t n
0 1

1 1 	 (27)

Since t ~ (1 − Tr), comparison between eqs 26 and 27 shows 
that the leading critical exponent in series in eq 23 is n1 = 1 − α. 
Therefore, retaining only low-order terms in eqs 22 and 23, we 
can express the function  f (t) as

	
f t a b0 0 bb t a t

c c t c t

1
1

1

0 1
1

2

1

1
	 (28)

where the parameters ci can be easily obtained in terms of the 
parameters ai and bi. The series (1 + c1t1−α − c2t +…) in eq 28 
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approaches the limit (1 − c1t1−α + c2t)–1 if

	 c t c t1
1

2 1	 (29)

It will be found below that this convergence condition is satisfied 
for the fluids considered in this article. Using this approxima-
tion, eq 28 yields 

	 f t
c

c t c t
0

1
1

21
	 (30)

Using eq 30, from conditions eqs 17 and 20, the parameters c0, 
c1, and c2 are related by 

	 c c c0 1 21 0 	 (31)

where ϕ′(0) can be calculated from eq 20 in terms of the Riedel 
factor αc. Unfortunately, αc is not usually available in pedagogi-
cal literature. However, from Figures 1 and 2 one can see that 
ϕ(t) approaches the critical point, tc = 0, with approximately the 
same slope as eq 10, that is, one can assume that 

	 0 1	 (32)

Taking into account eq 20, this approximation is equivalent to 
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Using approximation eq 32, from eq 31 one obtains that c0 = 1 
and c1 = c2. Considering these results in eq 30, the final form 
that we propose for f (t) is 

	 f t
c t t

1

1 1
1 	 (34)

We note that the approximations made in eq 28 to obtain 
eq 34 essentially reduce to equating 1 + x to 1∙(1− x), where 
x  =  c1(t1−α − t), and this requires that c1 be small enough.  
Higher-order terms in the expansion 1∙(1− x) cannot be ne-
glected as c1 becomes larger.

By substituting eq 34 into eq 16, the final form for ϕ(t) is 

	 t
t

1 cc t t1
1 	 (35)

Equation 35 contains only one fluid-dependent parameter (c1) 
that can be obtained from additional experimental vapor pres-
sure data (other than triple or critical points coordinates). In this 
work we shall obtain c1 by using the acentric point (Tr = 0.7, 
Pr  =  Prω) as reference. Then, by imposing that ϕ(t) passes 
through this point, from eq 35 one obtains 

	 c
t

t t
1 1 	 (36)

where, using eq 9, 

	 t
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and, using eqs 8 and 14, 
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The values of the parameter c1 calculated from eq 36 are given in 
Table 1 for the fluids considered in this article. From these values 
one can check the convergence condition eq 29. Since c1 = c2, 
eq 29 becomes | c1 | ≤ 1∙max| t1−α − t| ≈ 23.3 (with α = 0.11). 
One can see that in all cases one verifies this condition.

Using eq 15, the vapor pressure values provided by eq 35 
are calculated by 

rln P t
TT t

T t c t t
Pr

r
r

t

t
t
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1
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The AARDs, calculated using eq 39 with values of the param-
eter c1 reported in Table 1, are listed in Table 2 for the fluids 
considered here. One can see that the predictions of eq 39 (or 
eq 35) for vapor pressures improve the predictions of eq 13 (or 
eq  10) specially for oxygen and the seven non-Guggenheim 
fluids considered. This improvement can be seen in Figure 2 
where we have plotted with solid lines the function ϕ(t) given 
by eq 35, with the respective values of c1 reported in Table 1, 
for ammonia, CF4, water, C2HCl2F3, decane, heptane, and 
2-methylpentane. The small deviations between ϕ(t) obtained 
from the NIST data and ϕ(t) calculated from eq 35 are shown 
in the insets of Figure 2. We note that eq 35 requires the acentric 
factor ω as an additional input datum respect to eq 10, but it is 
able to significantly improve the prediction of vapor pressures 
even for substances such as 2-methylpentane with a low reduced 
triple point pressure.

To apply this method to an additional fluid one must pro-
ceed as follows: (i) consider Tt, Pt, Tc, Pc, and ω as input data; 
(ii) calculate the parameter c1 from eqs 36–38; and (iii) use eq 
39 to obtain the reduced vapor pressure as a function of the 
dimensionless temperature t.

Conclusions

At a pedagogical level, there are two main reasons for pro-
posing the Clausius–Clapeyron equation to describe the tem-
perature dependence of the saturated vapor pressure of a fluid: 
it is easy to derive and justify theoretically and it provides a good 
accuracy for many applications, particularly at small temperature 
ranges far from the critical point. Furthermore, Guggenheim 
showed that for some simple fluids one can use a corresponding 
states form of the Clausius–Clapeyron equation along the entire 
liquid–vapor coexistence curve. However, the Guggenheim 
equation can not be considered as a strictly universal equation 
because it contains an empirical parameter obtained from a fit to 
experimental vapor pressure data for seven simple fluids.

In this article, we have shown that by introducing two 
dimensionless variables reduced by using both triple point and 
critical point coordinates, the Clausius–Clapeyron equation can 
be written by means of a simple linear equation without any ad-
justable parameter. By analyzing the deviations of experimental 
vapor pressure data for fourteen fluids (the seven considered by 
Guggenheim and other seven taken from the NIST program) 
with respect to such universal form, we have proposed a vapor 
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pressure equation that satisfies some conditions that make it 
useful for practical pedagogical applications: (i) it has a simple 
analytical form containing only one fluid-dependent parameter; 
(ii) it is consistent with the renormalization group theory of 
critical phenomena; and (iii) it provides a good reproducibility 
of experimental vapor pressure values over the entire liquid–
vapor coexistence curve for a wide variety of fluids.
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