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A thermodynamic study of a pure substance at the triple point is presented. In particular, we show
that the mass fractions of the phases coexisting at the triple point obey lever rules in the specific
entropy-specific volume diagram, and the relative changes in the mass fractions present in each
phase along reversible isochoric and adiabatic processes of a pure substance at the triple point are
governed by the relative sizes of the segments of the triple-point line in the pressure-specific volume
diagram and in the temperature-specific entropy diagram. Applications to the ordinary triple point of
water and to the triple point of Al2SiO5 polymorphs are presented. © 2007 American Association of Physics
Teachers.
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I. INTRODUCTION

The number of independent intensive variables, r, which
determine the state of a heterogeneous system is given by the
Gibbs’s phase rule,

r = c − � + 2, �1�

where c is the number of independent components and � is
the number of phases in the system. The phase rule �1� es-
tablishes that for a pure substance �c=1�, the maximum
number of phases that can coexist in equilibrium is three
��=3�. The states where three phases coexist are called triple
points. Most pure substances have a triple point in which
solid, liquid, and vapor phases coexist, but other triple points
involving any three phases �for example, polymorphic solids
and 4He� can be formed. The essential feature of a triple
point is that r=0, that is, there are no independent intensive
variables at the triple point. The pure substance is then said
to have zero degrees of freedom and the system is invariant,
which means that its intensive state is given by fixed values
of the temperature and pressure. Therefore, the triple points
are isolated points in the pressure-temperature �PT� phase
diagram, and are reproducible under the same conditions.
This invariance explains the usefulness of triple points as
fixed thermometric points.

There are six triple points among the 17 defining thermo-
metric fixed points of the International Temperature Scale of
1990 �ITS-90�.1 The study of PT phase diagrams, where the
triple points play a fundamental role, are of paramount im-
portance in the thermodynamics of materials, including
geomaterials.2,3 For example, the region of the PT phase dia-
gram that includes the triple point of the Al2SiO5 polymor-
phs provides a fundamental pattern �petrogenetic grid� for
estimating the conditions of pressure and temperature under
which an Al2SiO5 metamorphic rock4 crystallizes.5,6

The aim of this paper is two-fold. We will show that the
mass fractions of the phases coexisting at the triple point
follow lever rules in the specific �per unit mass� entropy-
specific volume �sv� diagram, generalizing familiar lever
rules for a two-phase system. We also show that the relative
changes in the mass fractions of each phase along reversible
isochoric �constant volume� and adiabatic �isentropic� pro-
cesses of a pure substance at the triple point are governed by

the relative sizes of the segments of the triple-point line in
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the pressure-specific volume �Pv� diagram and in the
temperature-specific entropy �Ts� diagram, respectively.
These results are applied to the triple points of water �ice
I-liquid-vapor� and Al2SiO5 �andalusite-kyanite-sillimanite�.
The interest in the triple point of water rests mainly on the
fact that the definition of the Kelvin is based on this point
and its practical realization in triple point cells. The main
interest in the triple point of Al2SiO5 polymorphs arises from
the fact that the use of this system as a primary geothermoba-
rometer is related to the frequent occurrence of the three
polymorphs in fine-grained mudstones, siltstones, and shales
with different metamorphic grade �metapelitic rocks�.3,5,6

II. LEVER RULES AT THE TRIPLE POINT

Let v and s be the specific volume and the specific entropy
of a three-phase ��, �, and �� state of a substance at the
triple point. We consider a mass m of a pure substance at the
triple point so that m� is the mass in the phase �, m� is the
mass in the phase �, and m� is the mass in the phase �
�m=m�+m�+m��. If x��m� /m, x��m� /m, and x�

�m� /m are the mass fractions associated with the phases �,
�, and �, we have

x� + x� + x� = 1, �2�

v�x� + v�x� + v�x� = v , �3�

s�x� + s�x� + s�x� = s , �4�

where v�, v�, and v� are the specific volumes of the three
phases at the triple point, and s�, s�, and s� are the corre-
sponding specific entropies. Equations similar to Eqs. �3� and
�4� also hold for specific internal energies or specific enthal-
pies. From Eqs. �2�–�4�, we obtain

x� =
v���s − s�� − s���v − v��

v��s�� − v��s��

, �5�

x� =
v���s − s�� − s���v − v��

, �6�

v��s�� − v��s��
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x� =
v���s − s�� − s���v − v��

v��s�� − v��s��

, �7�

where we have used the notation f ij � f j − f i. Two remarks
can be made from Eqs. �5�–�7�. From Duhem’s theorem,7,8 if
the total mass m is known, a three-phase state is completely
specified by two specific variables that can be chosen, for
example, from the set �v, s, x�, x�, x��, and the mass frac-
tions are linear functions of both v and s.

If we choose s and v as the two specific variables that
specify the state of the system at the triple-point and use Eq.
�5�, we find that the line s=s�+s���v−v�� /v�� defines the
states for which x�=0. Similarly, if we use Eqs. �6� and �7�,
we find the lines that define the states for which x�=0 and
x�=0, respectively. These three lines form a triangle in the
sv-diagram �see Fig. 1� whose sides correspond to states in
which only two phases are present.9,10 The vertices of the
triangle correspond to states in which only one phase is
present, for example �x�=1, x�=x�=0� corresponds to the
vertex �; the points inside the triangle correspond to states in
which the three phases are present �x��0, x��0, x��0�. In
these diagrams the loci of constant values of a given specific
variable are straight lines of the same slope. In particular, the
loci of constant values of a mass fraction are straight lines
parallel to that side of the triangle along which this mass
fraction takes the zero value. Because of the Clapeyron–
Clausius equation,

�dP

dT
�

��

=
s��

v��

, �8�

the slope of a side such as �� of the triangle in the sv
diagram of a triple-point system coincides with the slope of
the corresponding coexistence curve ���� at the triple point
in the PT phase diagram.

An alternative way to determine the sv-diagram is by con-
sidering the Gibbs’s surface of the pure substance.11–14 This
surface represents the specific internal energy u as a function
of the variables s and v; that is, the fundamental equation �or
characteristic function� in the energy representation, u
=u�s ,v�, which contains all thermodynamic information
about the system.15 Because T= ��u /�s�v and P=−��u /�v�s,
the temperature and the pressure at any point on the Gibbs’s
surface are determined by the two slopes of the plane tangent
to the surface at that point. In the regions representing a
unique phase, a definite temperature and pressure determine

Fig. 1. The sv-diagram at the triple point for a pure substance with phases
�, �, and �. The specific entropies and specific volumes are taken in arbi-
trary units to be v�=1, v�=3, v�=20, s�=1, s�=10, and s�=13. A is an
arbitrary point either within the triangle or on a side.
one definite volume, so that the tangent plane touches such
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regions at only one point �these regions are skew surfaces�.
In the regions representing equilibrium between two phases,
the temperature and the pressure are related and do not de-
termine a unique volume, and a tangent plane touches a two-
phase region along a line �these regions are ruled surfaces�.
At the triple point, because all proportions of the three
phases are in equilibrium at the same temperature and pres-
sure, the tangent plane touches the surface at all of these
points; that is, this region is a plane triangle whose vertices
correspond to the pure phase �, �, and �. Typical Gibbs’s
surfaces for two pure substances in their solid, liquid, and
vapor phases are shown in Fig. 2. Figure 2�a� corresponds to
a substance for which the liquid contracts upon freezing, and
Fig. 2�b� corresponds to a substance for which the liquid
expands upon freezing. In particular, the projection onto the
sv-plane of the triple-point triangle in Fig. 2�a� provides a
triple point sv-diagram of the kind plotted in Fig. 1.

An sv-diagram allows for a simple geometrical interpreta-
tion of Eqs. �5�–�7�. Consider a state A with coordinates
�v ,s� in the triangle ��� �see Fig. 1�. The area of a triangle
with vertices at �v1, s1�, �v2, s2�, and �v3, s3� is given by

Area�123� = ±
1

2�v1 s1 1

v2 s2 1

v3 s3 1
� = ±

1

2
�v1s2 + v2s3 + v3s1

− v1s3 − v2s1 − v3s2� , �9�

where the sign is chosen so that one takes the positive result.

Fig. 2. The Gibbs’s surface of a pure substance that �a� contracts upon
freezing and �b� expands upon freezing. The triple point region has the
shape of a triangle with vertices corresponding, respectively, to the pure
phases solid �S�, liquid �L�, and vapor �V�. CP is the critical point.
Then Eqs. �5�–�7� become �see Fig. 1�
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x� =
Area�A���
Area�����

=
1
2�� A�A sin �1
1
2�� A�� sin �1

=
A�A

A��
, �10�

x� =
Area��A��
Area�����

=
1
2��A�A sin �2
1
2��A�� sin �2

=
A�A

A��
, �11�

x� =
Area���A�
Area�����

=
1
2�� AA� sin �3
1
2�� �A� sin �3

=
AA�

�A�

, �12�

respectively, where we have used the formula for the area of
a triangle. Three points on the same straight line form a
triangle of zero area and, thus, if the state A lies on one side
of the shaded triangle in Fig. 1, the mass fraction of the
phase associated with the vertex opposite to the line is zero.
For example, if the state A lies on the side ��, we have Area
�A���=0, and Eqs. �10�–�12� give

x� = 0, �13�

x� =
Area��A��
Area�����

=
�A

��
=

v� − v
v��

=
s� − s

s��

, �14�

x� =
Area���A�
Area�����

=
A�

��
=

v − v�

v��

=
s − s�

s��

. �15�

Equations �14� and �15� are the well-known lever rules for a
pure substance when only two phases �in this case, � and ��
are present.16–19 Equations �10�–�12� can be considered as
generalized lever rules for a pure substance at the triple
point.

III. TRANSFERRING ENERGY TO A SUBSTANCE
AT THE TRIPLE POINT

By heating �cooling� and/or by compressing �expanding�
reversibly a substance, we can change the relative masses of
the three coexisting phases, while the pressure and the tem-
perature remain constant at their triple point values. To ana-
lyze these changes, we consider a mass m of a pure sub-
stance at the triple point, so that x�, x�, and x� are the mass
fractions in the �, �, and � phases, respectively. Assume that
an amount of heat Q=Ttp�S is transferred reversibly to the
substance, and that the volume of the substance changes by
�V due to an amount of work W=−Ptp�V done reversibly on
the substance, where Ttp is the triple point temperature and
Ptp is the triple point pressure. Then, from Eqs. �5�–�7�, the
changes of the mass fractions are given by

�x� =
v��q − h���v

v��h�� − v��h��

, �16�

�x� =
v��q − h���v

v��h�� − v��h��

, �17�

�x� =
v��q − h���v

v��h�� − v��h��

, �18�

where q=Q /m, �v= ��V� /m, and hij =Ttpsij are the change

in the specific enthalpy associated with the transition from
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phase i to phase j. Equations �16�–�18� are very interesting
because they give us information about the energy �trans-
ferred as heat and/or work� necessary to determine the mass
fractions of the coexisting phases. For example, we can de-
termine the heat and/or the work necessary for a phase to
disappear. Furthermore, from Eqs. �16�–�18� we can easily
check the mass conservation in the system

�x� + �x� + �x� = 0. �19�

From Eq. �19� we have

�x�

�x�

= − 1 −
�x�

�x�

and
�x�

�x�

= − 1 − ��x�

�x�
�−1

, �20�

so that a knowledge of the relative fraction �x� /�x� lets us
determine the two remaining relative fractions, �x� /�x� and
�x� /�x�.

Let us consider that heat is transferred reversibly to a pure
substance at the triple point, but its volume is kept fixed
��v=0�. Then, from Eqs. �16� and �17� we obtain

��x�

�x�
�

�v=0
= −

v��

v��

. �21�

Equation �21� shows that when we reversibly supply heat �by
thermal contact with a heat reservoir at temperature Ttp� to a
constant-volume substance at the triple point, the changes in
the mass fractions are governed by the relative sizes of the
segments v�� and v�� of the triple point line in the Pv-
diagram.

Now, suppose that we change ��S=0�, the volume, revers-
ibly and adiabatically �that is, work is done reversibly on or
by the system and may, thus, be positive or negative� of a
substance at the triple point. From Eqs. �16� and �17� we
obtain

��x�

�x�
�

q=0
= −

h��

h��

= −
s��

s��

. �22�

Equation �22� shows that, when the volume of a substance at
the triple point is changed reversibly and adiabatically, the
changes in the mass fractions are governed by the relative
sizes of the segments s�� and s�� of the triple point line in
the Ts diagram.

IV. APPLICATIONS

Now we apply the results of the Sec. III to water at its
ordinary triple point and to the triple point of the polymorphs
of Al2SiO5, with the objective of analyzing the relative
changes of the coexisting phases when there is only revers-
ible heat transfer or only reversible work done with a three-
phase system.

Water. Water has a triple point at Ttp=273.16 K and Ptp
=611.3 Pa. At this point solid �S� liquid �L�, and vapor �V�
coexist with values of specific volumes and specific entro-
pies given in Table I. If we use the Clapeyron–Clausius equa-
tion �9�, the slopes of the coexistence curves in the PT phase

diagram are given by

1088S. Velasco and C. Fernández-Pineda



�dP

dT
�

SL
= − 13447.1

kPa

K
, �23a�

�dP

dT
�

LV
= 44.41

Pa

K
, �23b�

�dP

dT
�

SV
= 50.34

Pa

K
. �23c�

Using these values, the PT phase diagram of water near its
triple point is shown in Fig. 3�a�, and the sv diagram of the
triple-point triangle is plotted in Fig. 3�b�. We note that the
slopes of the triangle sides are also given by Eq. �23�.

Figure 3�b� allows for a qualitative analysis of the evolu-
tion of water at the triple point after reversible heat transfer
and/or work is done. For example, a reversible heating pro-
cess at constant volume �upward vertical process� increases
the liquid + vapor fraction until the solid disappears, and an
adiabatic reversible expansion process �horizontal process to
the right� increases the solid + vapor fraction until the liquid
disappears. A quantitative study requires the calculation of
the mass fraction changes. This quantitative analysis can be
of practical interest for controlling the relative amounts of
solid, liquid, and vapor inside water triple-point cells. For
example, we use the data from Table I and Eq. �16� and
obtain

Table I. Triple-point thermodynamic data of the phases for water �Ref. 20�

Water

Phase v �m3 kg−1� s �kJ kg−1 K−1�

solid �S� 1.0908�10−3 −1.221
liquid �L� 1.000�10−3 0.000
vapor �V� 206.14 9.1562

Fig. 3. �a� Water PT phase diagram in the neighborhood of its triple point.
�b� Triple point triangle for water in the sv plane. The data from Table I for

water are used.
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��xS��v=0 =
vLV

Ttp�vLVsLS − vLSsLV�
q = − 2.998 � 10−3q ,

�24�

with q given in kJ kg−1, and from Eqs. �21� and �20�,

��xL

�xS
�

�v=0
= −

vSV

vLV
= − 0.999 999 56 	 − 1 �25�

and

��xV

�xS
�

�v=0
= − 1 − ��xL

�xS
�

�v=0
= − 4.4 � 10−7 	 0. �26�

Equations �24�–�26� show that, when heat is transferred
�q�0� reversibly to a fixed volume of water at the triple
point, the mass in the liquid phase increases at the expense of
the mass in the solid phase while the mass in the vapor phase
increases very slightly �remaining almost constant�. From
Eq. �16� we have

��xS�q=0 = −
sLV

vLVsLS − vLSsLV
�v = 3.638 � 10−2�v ,

�27�

with �v given in m3 kg−1, and from Eqs. �22� and �20�,

��xL

�xS
�

q=0
= −

sSV

sLV
= − 1.133, �28�

��xV

�xS
�

q=0
= − 1 − ��xL

�xS
�

q=0
= 0.133. �29�

Equations �27�–�29� show that, when work is reversibly and
adiabatically done by compression ��v	0� at the triple
point, the mass in the liquid phase increases at the expense of
both the mass in the solid and vapor phases, and the decrease
in the mass fraction of the solid phase is about 7.5 times that
of the vapor phase.

Al2SiO5 polymorphs. Metamorphosed aluminious rocks
contain Al2SiO5 polymorphs: kyanite �K�, andalusite �A�,
and sillimanite �S�. The triple point of this system defines a
very useful fixed point in metamorphic petrology. Although
there are several estimates of the pressure and temperature of
the triple point among the polymorphs of Al2SiO5, the values
of Ptp=3.87±0.3 kbar and Ttp=784±20 K are currently pre-
ferred by petrologists.21 The specific volume and entropy
values for this system at the triple point are given in Table I.
These values have been calculated by us from an internally
consistent thermodynamic data set for kyanite, andalusite,
and sillimanite given in Ref. 22. From the Clapeyron–
Clausius equation �9� the slopes of the coexistence curves in

l2SiO5 polymorphs �Ref. 21�.

Al2SiO5

Phase v �m3 kg−1� s �kJ kg−1 K−1�

kyanite �K� 2.7467�10−4 1.4702
andalusite �A� 3.2056�10−4 1.5263
sillimanite �S� 3.0860�10−4 1.5408
and A
the PT phase diagram are given by
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�dP

dT
�

KS
= 20.81 bar/K, �30a�

�dP

dT
�

KA
= 12.22 bar/K, �30b�

�dP

dT
�

SV
= − 12.15 bar/K. �30c�

Using these values, the PT phase diagram of Al2SiO5 is
shown in Fig. 4�a�, while the sv diagram of the associated
triple-point triangle is plotted in Fig. 4�b�.

Figure 4�b� allows for a qualitative analysis of the evolu-
tion of coexisting kyanite, andalusite, and sillimanite
samples as a consequence of thermodynamic processes due
to the movement of magna toward the earth’s surface �mag-
matic activity�. In particular, we can see that reversible heat-
ing events produce sillimanite, and reversible cooling events
produce kyanite + andalusite. Also, reversible high pressure
�compression� events produce kyanite + sillimanite, and re-
versible low-pressure �decompression� events produce an-
dalusite. Therefore, the occurrence of coexisting kyanite, an-
dalusite, and sillimanite at the intersections of andalusite-
kyanite and kyanite-sillimanite zones suggests a magmatic
activity characterized by heating and decompression events.
A quantitative study requires the calculation of the mass frac-
tion changes. If we use the data from Table I, from Eq. �16�
we have

��xS��v=0 =
vKA

Ttp�vKAsKS − vKSsKA�
q = 4.377 � 10−2q ,

�31�

−1

Fig. 4. �a� PT phase diagram for the system Al2SiO5 in the neighborhood of
its triple point. �b� Triple point triangle for Al2SiO5 polymorphs in the sv
plane. The data from Table I for Al2SiO5 polymorphs are used.
with q given in kJ kg . From Eqs. �21� and �20� we have

1090 Am. J. Phys., Vol. 75, No. 12, December 2007
��xK

�xS
�

�v=0
= −

vSA

vKA
= − 0.261 �32�

and

��xA

�xS
�

�v=0
= − 1 − ��xK

�xS
�

�v=0
= − 0.739. �33�

Equations �31�–�33� show that when heat is supplied �q
�0� reversibly to a fixed volume of Al2SiO5 at the triple
point, the presence of sillimanite increases at the expense of
both kyanite and andalusite, and the decrease in the mass
fraction of andalusite is about 2.8 times that of kyanite.

From Eq. �16� we have

��xS�q=0 = −
sKA

vKAsKS − vKSsKA
�v = − 41931.5�v , �34�

with �v given in m3 kg−1, and from Eqs. �22� and �20� we
have

��xK

�xS
�

q=0
= −

sSA

sKA
= 0.259, �35�

��xA

�xS
�

q=0
= − 1 − ��xK

�xS
�

q=0
= − 1.259. �36�

Equations �34�–�36� show that, in reversible adiabatic com-
pression ��v	0� processes of Al2SiO5 at the triple point, the
presence of sillimanite and kyanite increases while an-
dalusite decreases, and the increase in the mass fraction of
sillimanite is about four times that of kyanite.

V. SUMMARY

In summary, the possible states of a pure substance at the
triple point can be represented by a triangle in a sv-diagram.
The vertices of the triangle are single-phase states, the sides
of the triangle are two-phase states, and the points inside the
triangle are three-phase states. Then the relative mass
amount in each phase can be obtained by using simple lever
rules. Furthermore, by reversibly exchanging heat and/or do-
ing work with a substance at the triple point, we can change
the amount of the substance that exists in each of the three
phases. In particular, if the substance is kept at constant vol-
ume or is surrounded by adiabatic walls, the relative changes
of the mass fractions when energy is reversibly transferred to
the substance are given by the ratio between the portions of
the triple-point line in the Pv-diagram and in the Ts-diagram,
respectively. These results are a consequence of the linearity
of the mass fraction in each phase versus the total specific
entropy and the total specific volume of a pure substance at
the triple point.
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Apparatus at Washington and Lee. This picture was taken of the apparatus collection at Washington and Lee College
ca. 1900. On the stool is a seven-mirror device for spectrum recombination. At the right hand side is a large
“American”-style vacuum pump with a bell jar. An electrostatic machine is on the small table to the right of the stove.
A set of chemical cells �probably Edison cells� is on the back wall on the left hand side. On the right-hand side of the
large table is a pair of driven tuning forks for demonstrating Lissajous figures, and to the left is the large circular coil
of a tangent galvanometer. A spectrometer can be seen below the two hanging portraits. �Notes by Thomas B.
Greenslade, Jr., Kenyon College�
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