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Optimal low symmetric dissipation Carnot engines and refrigerators
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A unified optimization criterion for Carnot engines and refrigerators is proposed. It consists of maximizing
the product of the heat absorbed by the working system times the efficiency per unit time of the device,
either the engine or the refrigerator. This criterion can be applied to both low symmetric dissipation Carnot
engines and refrigerators. For engines the criterion coincides with the maximum power criterion and then
the Curzon-Ahlborn efficiency ηCA = 1 − √

Tc/Th is recovered, where Th and Tc are the temperatures of the
hot and cold reservoirs, respectively [Esposito, Kawai, Lindenberg, and Van den Broeck, Phys. Rev. Lett.
105, 150603 (2010)]. For refrigerators the criterion provides the counterpart of Curzon-Ahlborn efficiency
for refrigerators εCA = [1/(

√
1 − (Tc/Th)] − 1, first derived by Yan and Chen for the particular case of an

endoreversible Carnot-type refrigerator with linear (Newtonian) finite heat transfer laws [Yan and Chen, J. Phys.
D: Appl. Phys. 23, 136 (1990)].
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The publication in 1975 of Curzon and Ahlborn’s pioneer-
ing work [1] opened the perspective of establishing more real-
istic theoretical bounds for real energy converters, and gave rise
to the birth and development of finite-time thermodynamics
(FTT), a branch of thermodynamics devoted to extend classical
reversible thermodynamics to include more realistic finite-time
and finite-size (irreversible) processes. The main goal of FTT
is to ascertain the best operating mode of heat devices with
finite-time cycles. Basically, finite-rate constraints arising from
several sources of irreversibility are modeled and then a
suitable functional is optimized with respect to the involved
parameters. In principle, one has the freedom to choose such
a functional. This has lead to the proposal of a great variety
of criteria based on thermodynamic, economic, compromise,
and sustainability considerations [2–11].

A class of limit models into the FTT framework is the
so-called endoreversible (or exoirreversible) models, in which
all the accounted irreversibilities come from the couplings
between the working system and the external heat reservoirs,
whereas the Clausius equality (i.e., reversibility) holds for
the cyclic system. These endoreversible models have suffered
some criticisms precisely due to the internal reversible as-
sumption, which is contradictory to the existence of external
finite-area exchangers interacting with the internal working
fluid across finite-temperature gaps [12] (see also Ref. [13]).
In this sense the proposal of models, accounting for the
irreversibility of real processes without the consideration of the
endoreversibility hypothesis and capable of being analyzed by
thermodynamic optimization methods, is especially valuable.
Along this line, recently Esposito et al. [14] have proposed
a model for low-dissipation Carnot engines which do not
make use of the endoreversibility hypothesis. In this model the
entropy generation in each heat-exchange process is assumed
to be inversely proportional to the time duration of the process,
and the reversible regime is approached in the limit of infinite
times. They show for this model that the maximum power

regime allows to recover the Curzon-Ahlborn efficiency ηCA,
when symmetric dissipation is considered, but without the
requirement of assuming any specific-heat transfer law or the
linear-response regime since the derivation is independent of
external temperature values. We recall that symmetric low
dissipation refers to an equal amount of heat dissipated at each
thermal bath provided there is an equal time duration at each
heat transfer.

Another important shortcoming of the endoreversible mod-
els is its lack of generality. This problem remains an open
question provided that the optimization of the refrigeration
power for an endoreversible Carnot refrigerator, with linear
(Newtonian) finite-time heat transfers, cannot allow to obtain
an analogous expression for the efficiency of the refrigerator
to Curzon-Ahlborn’s value for endoreversible heat engines.
So, a number of different optimization criteria has been
proposed for these kinds of models. Yan and Chen [15]
reported an optimization study taking as the target function
εQ̇c, where Q̇c is the cooling power of the refrigerator,
and ε is the usual coefficient of performance (COP) for
refrigerators ε = Q̇c/Ẇ , where Ẇ denotes the power imput.
The optimized coefficient of performance they obtain depends
only on τ ≡ Tc/Th and was later independently reported by
Velasco et al. [16,17] using a maximum per unit time COP,
and very recently by Allahverdyan et al. [18] from a quantum
model with two n-level systems interacting via a pulsed
external field in the classical limit. Nevertheless, within the
linear irreversible thermodynamics formalism the analysis of a
specific working regime gave a different optimized coefficient
of performance [19]. However, it has been claimed that none of
those optimized COP could be considered as the equivalent to
the Curzon-Ahlborn efficiency for endoreversible refrigeration
cycles [15–19].

The objective of this work is twofold. First we show that
the optimization criterion reported by Yan and Chen [15] for
refrigerators is exactly the same as that for the optimization
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of power output for heat engines, when both are properly
considered in terms of the working systems and total cycle
time. This equivalence is universal, i.e., independent of any
particular model. Second, we apply this unified figure of merit
to a symmetric dissipation Carnot refrigerator to obtain the
counterpart of the Curzon-Ahlborn efficiency for refrigerators.

To attain these goals, we first address the problem of
considering a unified optimization criterion for both heat
engines and refrigerators, and we focus our attention on
the common characteristic of every energy converter, the
cyclic working system, instead of any specific coupling to
external heat sources which can vary according to a particular
arrangement. Thus, we introduce a different figure of merit χ ,
defined as the product of the converter efficiency z times the
heat absorbed by the working system Qin, divided by the time
duration of cycle tcycle:

χ = zQin

tcycle
. (1)

For a Carnot-type engine Qin ≡ Qh, with Qh the amount of
heat absorbed from the hot reservoir by the working system,
and z ≡ η ≡ −W/Qh. Then, from (1),

χ (E) = ηQh

tcycle
= − W

tcycle
, (2)

which shows that χ (E) coincides with the power output of
the engine. On the other hand, for a Carnot-type refrigerator
Qin ≡ Qc, with Qc the amount of heat evacuated to the cold
reservoir by the working system, and z ≡ ε ≡ Qc/W . Then,
from (1),

χ (R) = εQc

tcycle
, (3)

which shows that χ (R) coincides with the figure of merit first
proposed by Yan and Chen [15] for refrigerators. In this simple
way, χ includes, under a unified expression, the power output
for power cycles and the the optimization criterion εQ̇c for
refrigerator cycles. This is the first main result of this Rapid
Communication.

Obviously, when applied to the low-dissipation heat engine
model, at maximum power the χ -criterion recovers the
Curzon-Ahlborn value if dissipation is symmetric, as reported
in Ref. [14]. The second goal of this Rapid Communication
is the analysis of low-dissipation Carnot refrigerators, under
the above unified perspective, by studying the maximum χ

regime with the same symmetric conditions. This extends the
work [14] for heat engines to refrigerators, overcoming the
drawbacks of the endoreversibility hypothesis. Our starting
point will be a Carnot refrigerator, for which all processes are
reversible and therefore have a infinite-time duration. Then, the
entropy change of the Carnot refrigeration device in a cycle
�S(C) must be zero, determining

0 = �S(C) = �S
(C)
Th

+ �S
(C)
Tc

⇒ �S ≡ �S
(C)
Th

= −�S
(C)
Tc

,

(4)
where �S

(C)
Th

and �S
(C)
Tc

are the entropy changes of the hot and
cold reservoirs, respectively. Moving away from reversibility,
for a Carnot-like refrigerator the times th and tc, associated
with the heat exchanges between the working system and the
hot and cold reservoirs, respectively, are finite. As in Ref. [14]

we only assume here that the entropy generation in each of
these processes is inversely proportional to the time of the
process without any additional hypothesis about heat transfer
laws or external heat bath temperatures. Then we get

�STh = �S + �

th
,

(5)
�STc = −�S + �

tc
,

where �STh and �STc are the entropy changes of the hot
and cold reservoirs, respectively for the real Carnot-type
refrigerator. Equations (5) assume symmetric dissipation by
considering the same constant � for both processes, and allow
to recover the reversible refrigerator in the limits th → ∞ and
tc → ∞.

The entropy changes of the hot �STh and cold �STc

reservoirs are expressed as

�STh = −Qh

Th
,

(6)

�STh = −Qc

Tc
.

Thus, from Eqs. (5) and (6) these amounts of heat can be
written:

Qh = Th

(
−�S − �

th

)
,

(7)

Qc = Tc

(
�S − �

tc

)
.

The first principle of thermodynamics provides the amount
of work needed by the device in every cycle and is determined
by

W = −Qh − Qc, (8)

while its efficiency is then given by

ε = Qc

−Qh − Qc
. (9)

The substitution of (7) in (9) allows one to obtain the
expression of the efficiency of our refrigeration device:

ε =
Tc

(
�S − �

tc

)
−Th

( − �S − �
th

) − Tc
(
�S − �

tc

) , (10)

and also, from Eqs. (7), and assuming that the time duration
of the cycle is tcycle = th + tc, the refrigeration power R will
be given by

R ≡ Q̇c ≡ Qc

tcycle
=

Tc
(
�S − �

tc

)
th + tc

. (11)

Equations (10) and (11) show that, by fixing the temper-
atures of the hot and cold reservoirs Th and Tc, the present
model depends on four parameters: the entropy change of the
reservoirs ±�S; the constant characterization of the entropy
generation of the reservoirs caused by the irreversibilities �;
and the time durations th and tc associated with the heat
exchanges between the working system and the hot and cold
reservoirs, respectively.
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Thus, the substitution of Eqs. (10) and (11) in (3) de-
termines that χ (R) is a function of these four parameters
χ (R)(th,tc; �,�S). The optimal χ (R) regime is obtained by
maximizing this function with respect to the time durations
th and tc. This requires to fulfill the following conditions:(

∂χ

∂tc

) (
tc = tcmaxχ

,th = thmaxχ

) = 0,(
∂χ

∂th

) (
tc = tcmaxχ

,th = thmaxχ

) = 0,

{(
∂2χ

∂t2
c

)(
∂2χ

∂t2
h

)
−

[(
∂2χ

∂tc∂th

)]2}
(12)

(
tc = tcmaxχ

,th = thmaxχ

)
> 0,(

∂2χ

∂t2
c

) (
tc = tcmaxχ

,th = thmaxχ

)
< 0.

These conditions give rise to a unique, physically accept-
able solution:

tcmaxχ
= 2�

�S

(
1 + 1√

1 − τ

)
,

(13)

thmaxχ
= 2�

�S

1√
1 − τ

.

Thus, the efficiency at maximum χ is obtained by the
substitution of (13) in (10), leading to

εmaxχ = τ

1 − τ + √
1 − τ

= 1√
1 − τ

− 1 ≡ εCA. (14)

Equation (14) allows one to recover the τ -dependent
optimal efficiency obtained by Yan and Chen [15] for en-
doreversible refrigerators with linear finite-rate heat transfer
laws, but here it is obtained without any specific-heat law,
under symmetric conditions and when the ratio of contact
times is given by tcmaxχ

/thmaxχ
= √

1 − τ + 1 = 1
1+εmaxχ

+ 1 (for

heat engines this ratio is tcmaxχ
/thmaxχ

= √
τ = 1 − ηmax χ ; see

Ref. [14]).
Given that the result in Eq. (14) for refrigerators has been

obtained with the same model, under the same symmetric
conditions, and under the same optimization criterion as the
Curzon-Ahlborn value, it is appealing to be considered as the
genuine counterpart value for refrigerators. This is the second
main result of this Rapid Communication.

We close by comparing the observed results with those
predicted by Eq. (14). For this we rewrite Eq. (14) in
terms of the Carnot efficiency εC = τ/(1 − τ ) as εmaxχ (εC) =√

1 + εC − 1 [for heat engines ηmax χ (ηC) = 1 − √
τ = 1 −√

1 − ηC ; see Ref. [14]]. Then, the following limits hold:

lim
εC→0

εmaxχ (εC)

εC
= 1

2
,

(15)

lim
εC→∞

εmaxχ (εC)

εC
= 0,

and, provided that εmaxχ/εC is a monotonous decreasing
function of εC and 0 < εC < ∞, we finally obtain

0 � εmaxχ (εC) � 1
2εC ≡ εsup

maxχ (εC). (16)

TABLE I. Theoretical and experimental data for a high-
temperature refrigerator [20].

Tc (K) Th (K) εC εexp ε−1
exp ε−1

maxχ (εsup
maxχ )

−1

283 293 28.300 14.085 0.071 0.227 0.071
283 298 18.867 11.111 0.090 0.289 0.106
283 303 14.150 9.009 0.111 0.346 0.141
283 308 11.320 7.407 0.135 0.398 0.177
283 313 9.433 6.135 0.163 0.448 0.212
273 293 13.650 8.333 0.120 0.354 0.147
273 298 10.920 7.407 0.135 0.408 0.183
273 303 9.100 6.135 0.163 0.459 0.220
273 308 7.800 5.102 0.196 0.509 0.256
273 313 6.825 4.255 0.235 0.556 0.293
263 293 8.767 6.135 0.163 0.471 0.228
263 298 7.514 5.000 0.200 0.521 0.266
263 303 6.575 4.545 0.220 0.571 0.304
263 308 5.844 3.610 0.277 0.619 0.342
263 313 5.260 2.950 0.339 0.666 0.380
253 293 6.325 4.292 0.233 0.586 0.316
253 298 5.622 3.610 0.277 0.634 0.356
253 303 5.060 3.021 0.331 0.684 0.395
253 308 4.60 2.538 0.394 0.732 0.435
253 313 4.217 2.183 0.458 0.779 0.474
233 293 3.883 1.792 0.558 0.827 0.515
233 298 3.585 1.471 0.680 0.876 0.558
233 303 3.329 1.203 0.831 0.925 0.601
233 308 3.107 0.982 1.018 0.974 0.644
233 313 2.913 0.784 1.275 1.022 0.687

Even though real refrigerators do not operate as a Carnot
cycle and then the low-dissipation hypothesis may not be
verified, a comparison of εmaxχ (εC), εsup

maxχ (εC), and the Carnot
efficiency εC with observed efficiencies should be very
valuable. In Fig. 1 these efficiencies versus the experimental
data corresponding to a high-temperature refrigerator from
Table I are represented. The plots of inverse efficiencies are
widely used in studies of real irreversible refrigerators [20].
The figure shows that ε

sup
maxχ is quite close to the experimental

data. For low values of εC, which imply low values of τ

and Tc, the optimum χ regime predicted efficiencies that
fit better to experimental data. The results shown in Table I
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FIG. 1. (Color) ε−1
maxχ (red curve), (εsup

maxχ )
−1

(green curve ), ε−1
C

(black curve), and inverse efficiency of a real high-temperature
refrigerator ε−1

exp (blue dotted curve) (see Table I) vs the Carnot
efficiency εC.
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and Fig. 1 reveal that εmaxχ (εC) allows for an accurate and
easy estimation of high-temperature real refrigerators (as the
ηCA ≡ ηmaxχ value for power heat devices, see Table I and
Fig. 1 in Ref. [14]).

In summary, we have presented a unified optimization crite-
rion χ , which it is formulated in terms of the working system
instead of the external coupling characteristics. It allows to
recover the CA efficiency ηCA = 1 − √

τ when it is applied
to low-dissipation heat engines under symmetric conditions,
and the result εmaxχ = τ

1−τ+√
1−τ

= 1√
1−τ

− 1 ≡ εCA for low-
dissipation refrigerators under the same symmetric conditions.
The criterion accounts for the maximum power for heat engines

and the product of εQ̇c for refrigerators. Most important,
all of these results have been obtained without invoking the
endoreversibility assumption, or any specific-heat transfer law
between the cyclic system and external heat bath couplings,
and independently of the external temperatures values, i.e.,
beyond the linear-response regime usually considered both
in the stochastic thermodynamics [10,21] and in the linear
irreversible thermodynamics frameworks [22,23].
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