Optimal designs for compartmental models with unknown/non-constant transfer coefficients

Rodríguez-Díaz, J.M.¹, Sánchez-León G.^{1,2} and Santos-Martín M.T.¹

¹ University of Salamanca, ² ENUSA Industrias Avanzadas S.A.

SUMMARY

Numerical procedures for obtaining optimal designs for compartmental models when there is not an analytical solution are proposed. The ideas can be extended to other (non-compartmental) ordinary-differential-equation systems without analytical solutions.

Optimal designs for compartmental models and ordinary-differential-equation systems

- Known set of techniques for obtaining optimal designs when the model is linear in the parameters.
- For non-linear models (but given by an analytical expression) the usual approach is to linearize it. In this case initial values are needed for the non-linear parameters (locally optimal designs)
- Problems when it is not possible to obtain an analytical expression for the model. Example: model described by a system of ordinary differential equations (ODE) without a general solution. In this situation, the techniques used routinely by the optimal design theory cannot be employed.

Method 1

- Virtual model
- Numerical derivatives

Method 2

Extended systems

Method 3

Compartmental-like models

Models given by Equation (1)

$$\begin{cases} \dot{x}(t) = Ax + b(t), t \ge 0\\ x(0) = x_0 \end{cases}$$
 (1)

(for instance compartmental models), where $x_i(t)$ denotes the amount or content of species in compartment i at a time t. A is the $m \times m$ system matrix given by $a_{ij} = g(k_{ij})$, where k_{ij} are the transfer constants

 $b_i(t)$ is the input rate into compartment i from the environment

ullet The solution of Equation (1) when the coefficients a_{ij} are constants is

$$x(t) = x_0 \exp(At) + \exp(At) * b(t)$$
 (2)

(see Bates and Watts, 1988), where "*" denotes convolution,

$$\exp(At) * b(t) = \int_0^t \exp[(t - \tau)A]b(\tau)d\tau$$

ullet Then, if b(t) and x_0 are not dependent on $heta_j$,

$$\dot{x}_{(i)}(t) = Ax_{(i)}(t) + A_{(i)}x(t)$$

Now, mimicking Equation (2) $x_{(j)}(t) = \exp(At) * [A_{(j)}x(t)]$, and substituting x(t) from (2)

 $x_{(j)}(t) = \exp(At) * A_{(j)} \exp(At) x_0 + \exp(At) * A_{(j)} \exp(At) * b(t) ,$ that is the derivative function

• In particular, if the input occurs for t=0, $x(0)=x_0$ and b(t)=0 for t>0, and then $x_{(j)}(t)=\exp(At)*A_{(j)}\exp(At)x_0$

Example: Biokinetic model of Ciprofloxacin and Ofloxacin

It is a physiological (non-compartmental) model that produces the following differential-equation system (Sánchez Navarro et al, 1999):

$$\begin{aligned} c'_{out}[t] + \left(\frac{Q}{V_p} + \frac{PS}{V_p}\right) c_{out}[t] - \frac{PS}{V_p} c_{Tu}[t] &= \frac{Q}{V_p} c_{in}[t] \\ c'_{Tu}[t] + \left(\frac{PS}{V_{Tu}} + k_{on}\right) c_{Tu}[t] - \frac{PS}{V_{Tu}} c_{out}[t] - k_{off} \frac{V_{Tb}}{V_{Tu}} C_{Tb}[t] &= 0 \\ c'_{Tb}[t] + k_{off} c_{Tb}[t] - k_{on} \frac{V_{Tu}}{V_{Tb}} c_{Tu}[t] &= 0 \text{ with initial conditions} \\ c_{out}[0] = 0, c_{Tu}[0] = 0, c_{Tb}[0] &= 0 \end{aligned}$$

The differential-equation system for the model can be expressed after some substitutions as

$$x'_1(t) = -5.87256x_1(t) + 2.7893x_2(t) + 3.08325c_{int}(t)$$

 $x'_2(t) = 0.423335x_1(t) + (-k_{on} - 0.423335)x_2(t) + 0.15598k_{off}x_3(t)$
 $x'_3(t) = 6.411k_{on}x_2(t) - k_{off}x_3(t)$

with $x_1(0) = x_2(0) = x_3(0) = 0$ and t in days. According to Sánchez (2007), $c_{in}(t) = 13610.1te^{-11.216t}$ will be used.

Cout(t)

PS VTu kon koff VTb

	Number of observations		
	2	3	4
	1.574	1.570	2.111
D-opt	6.016	5.154	15.166
		8.312	29.460
			43.942
	1.463	2.154	2.111
A-opt	6.689	19.854	15.166
		50.808	29.460

Optimal designs

Optimal times when using exponential covariance

Efficiency study:

D-opt: 2-point design is the best (then 3-point)

43.942

A-opt: 3-point design is the best (then 4-point)

Acknowledgments

Research was supported by the Spanish Ministry of Education and Science (Project 'MTM 2010-20774-C03-02')

References

Bates, D.M. and Watts, D.G. (1988). *Nonlinear Regression Analysis and Its Applications*. John Wyley & Sons, New York.

Sánchez, G. (2007). Fitting bioassay data and performing uncertainty analysis with BIOKMOD. *Health Physics* 92, 64-72.

Sánchez-Navarro, A., Casquero, C. and Weiss, M. (1999). Distribution and Binding Kinetics of of Ciprofloxacin and Ofloxacin in the Hindlimb of the Rat. *Pharmaceutical Research* 16, 587-591.

Lagów Lubuski 10-14 June 2013

