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Bioassays can be used to estimate the initial intake I for the case of an acute intake exposure for an individual worker. To
evaluate the effective dose, apart from I, we need to know other parameters such as activity median aerodynamic diameter
(AMAD) or the fraction absorption ( f1) in the blood from the GI tract, but in an accident situation these parameters are often
unknown. The bioassay measurement values can be used to estimate by fitting the parameters unknown. In this paper, optimal
designs for the estimation of the unknown parameters are developed. The efficiency of the design will depend on the number of
samples and the measurement accuracy. The method described applies D-optimality that maximises the determinant of the
Fisher information matrix to find the best moments where the bioassay measurements should be taken. It requires obtaining
the analytical solution of the biokinetic model as a function of the parameters to be fitted. The method has been implemented
in a computer program.

INTRODUCTION

The internal doses for workers or members of the
public exposed to the intake of radioactive particu-
lates can be estimated using bioassay data such as
lung and body counter measurements, urine or fae-
cal radioisotope concentration, etc. The Interna-
tional Commission on Radiological Protection
(ICRP) biokinetic models are applied to establish a
relationship between the individual intake and the
bioassay measurements, and then to infer the inter-
nal dose.

According to the ICRP(1) for modelling the intake
of radioactive substances the human body can be
divided into three sub-systems (Figure 1):

(1) The human respiratory tract model or HRTM(2)

(Figure 2). If a person instantaneously intakes,
by inhalation, a quantity I, a fraction is
deposited in some compartments labelled ‘Parti-
cles in Initial State’ (PIS) and in anterior nose
(ET1). The fraction of I deposited directly from
environment to a compartment i of the respira-
tory tract (RT) is called the Initial Deposition
Fraction or IDFi( p), where p is the activity
median aerodynamic diameter (AMAD) value
in mm. The AMAD takes into account the fol-
lowing: size, shape, density, anatomical and
physiological parameters as well as various con-
ditions of exposure. From each PIS compart-
ment the material is transferred into the body
fluids (usually the blood B), at an absorption
rate sp. It is also simultaneously transferred
from PIS (at a rate spt) to a corresponding

compartment labelled ‘Particles in Transformed
State’ (PTS). In each compartment in PTS, the
isotope is dissolved at a constant rate sp into the
body fluids. From the last compartment of RT,
ET2, the flow goes to the gastrointestinal tract
(GI). The general model of the RT is common to
any element. The absorption rate (spt, sp, st) val-
ues, represented in Figures 1 and 2, are related
with the chemical form of the element.

(2) The gastrointestinal tract or GI (the detailed
description is given in ICRP 30(3)). It includes
the stomach (ST), small intestine (SI), upper
large intestine (ULI) and lower large intestine
(LLI). The flow into the ST can come either
from RT (compartment ET2) or from outside
of the system by ingestion. Part of ST flow goes
to the blood and the rest goes to ULI. The rate
constant from SI to B is given by lB ¼ f1 lSI/
(1� f1), where f1 represents the fraction of the
stable element reaching the blood (also called
body fluids). The value of f1 is associated with
the element and their chemical form. Part of the
flow goes out of the system by faecal excretion.

(3) Systemic compartments (‘Rest of the body’ in
Figure 1). Part of the flow from B goes to the
systemic compartments that are specific for each
element or groups of elements(4). The elimina-
tion out of the system is done by urine excretion.

Note that the ingestion is a particular case of the
model described before where the intake I occurs
directly from outside the system to ST. The injection
is another particular case where the intake happens
directly in the blood.

All the current ICRP(1,5) biokinetic models are re-
presented by a system of ordinary linear differential�Corresponding author: guillermo@usal.es
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equations with constant coefficients. The predicted
value Rm(t) for a kind of bioassay m can be obtained
solving the model for a specific isotope.

We will refer to the case of an acute intake I by
inhalation or ingestion at t ¼ 0, then the solution can
be represented by

Rm tð Þ ¼ I rm t; k1; . . . ; knð Þ ð1Þ

where rm(t, k1, . . ., kn) is usually called the reten-
tion function. The parameters k1, . . . , kn are associ-
ated with specific characteristics of the substance
intake, conditions of the exposure and with the
parameters of the models, and m is the kind of
bioassay [Lung: lung retention; Wb: whole-body
content; Uri: daily urine excretion (accumulated in
24 h); Fec: faecal excretion (accumulated in 24 h);

Oth: an specified compartment or organ content
(e.g. thyroid)].

Apart from I, we will suppose that one or more
parameters, b ¼ (b1, . . . , bq), of the model are
unknown (e.g. AMAD, f1). We will need to know
the analytical solution of the model, Rm(I, b, t), as
function of the parameters unknown. The parame-
ters I and b can be estimated by taking bioassay
measurements Xi, with associated uncertainties ui

in different times ti and then fit these data with
Rm(I, b, t). It can be done using non-linear regression
techniques as the included in the BIOKMOD(6)

code.
The question that we want to answer in this paper

is when the measurements Xi should be taken.
That is, what are the most appropriate values for
ti? With this purpose a method, using optimal
design(7), has been developed and implemented in a
computer code.
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Figure 1. Conceptual ICRP Model applied for intake by
inhalation. The flow b(t) from the environment is deposited
in some compartments of the RT. ‘Rest of the body’ (RB)
represents the systemic compartments. The detailed flow
diagram for RB is specific to each kind of element and
their chemical form. The rectangular boxes include several
compartments (represented in the Figure 2). Circles repre-
sent single compartments. The thick dashed arrows mean
that the flow comes or goes to more than one compart-
ment. The thin dashed arrows mean that the flow can
follow this way or not, depending on the kind of the

element.
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Figure 2. HRTM(2,5). The particles intaken from environ-
ment are deposited in compartments with grey background
following the ways represented in the flow diagram. The
dashed arrow, , from sub-system PIS to sub-system
PTS means that the flow goes from each compartment
in PIS to the compartment with the same number in
PTS. The hollow arrows,

!

, means a flow from each
compartment in sub-system PIS or PTS to the B. A
simple arrow, !, means flow from a single compartment

to other.

G. SÁNCHEZ and J. M. RODRÍGUEZ-DÍAZ
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COMPUTING OPTIMAL DESIGNS

To obtain the moments where the bioassay data
should be taken we will use optimal design. The
most universally accepted is D-optimal, which
focuses centres on the determinant of the covariance
matrix, and thus, minimises the volume of the confi-
dence ellipsoid of the estimation of the parameters.
This will be the one used throughout this paper, and
D-optimal designs with different number of points
will be shown for various examples.

Some constraints must be taken into account the
following: (1) it cannot be simultaneously applied for
different kinds of bioassay (e.g. lung content and
also urine excretion); (2) it is necessary to leave
some time between consecutive samples; (3) the first
bioassay will be taken at t0> 0. These and other
considerations on the problem have been discussed
in a previous work(7). This previous paper was
focused on the development of an optimal design
method to be applied for the lung counter measured
where the AMAD was unknown. Now, we will
extend the method to include the following:

(a) Other kinds of bioassay, apart from lung reten-
tion, such as urine excretion or whole-body contents;

(b) as well as the AMAD p, other parameters
whose values are unknown.

Let us suppose that the retention function Rm(I, b, t)
after an acute input at t ¼ 0, for the bioassay m
chosen, can be expressed as function of the unknown
parameters. It has (Appendix A) the following
pattern:

Rm I ; b; tð Þ ¼ I
Xq

r¼1

Fr bð Þe�Gr bð Þt ð2Þ

being Fr(b) and Gv(b) expressions obtained solving
the model for the specific case.

Now, we apply the D-optimal design method:
Given a model Z(t; s), where s ¼{I, b1, . . . , bq},

which we rewrite s ¼ {s1, . . . , sp}, is the vector of
unknown parameters, the Fisher information matrix
M for a specific design x ¼ {t1, . . . , tn} (ti is the time
when the ith sample should be taken) will be

M ¼ E
@logl

@si

@logl

@sj

� �
, ð3Þ

where l denotes the likelihood function for the
regression residuals.

When the model is not linear with respect to the
parameters, the information matrix (and then the
optimal designs) will depend on the unknown
parameters. In this case, initial values are needed
for the ‘non-linear’ parameters(8), and the designs
computed will be locally optimal.

A D-optimal design will be one that leads
the determinant of the information matrix to a
maximum.

The information matrix is the main tool for com-
puting optimal designs, since it is asymptotically
proportional to the inverse of the covariance matrix
of the estimators of the model parameters.

If the model Z(t; s) is differentiable with respect
to the parameters with a continuous derivative,
the information matrix for design x and normally
distributed random errors can be written as

M ¼ XTS�1X; ð4Þ

where X is the n� p matrix whose ith row is

rZ ti; sð Þ ¼ @Z ti; sð Þ
@s1

; . . . ;
@Z ti; sð Þ
@sp

� �
ð5Þ

and S denotes the covariance matrix of the residuals.
Since all the bioassays are performed on an indi-

vidual worker it is convenient to consider a non-
trivial covariance matrix. One of the common
choices used in literature [Cresie(9)] is S ¼ s2G,
where s2 is the standard deviation associated with
the system of measurement, and G ¼ (lij) with lij ¼
exp(�r|ti� tj|), meaning that the relationship
between samples decays exponentially with increas-
ing time–distance between them. The parameter
r is characteristic of the worker, being a typical
value r ¼ 1 that will be used in the examples of
the next section. For computational purposes we
have found more appropriate to use the distance
di ¼ ti� ti�1 instead of ti. The D-optimal design
will be the set of values of ti that leads det|M| to a
maximum.

We will show the method, step by step, with an
easy example:

(1) Let us suppose R(I,p,t) ¼ I exp(�0.02tþ 0.2p)
being the unknown parameters s ¼ {I, p}.

(2) Then substituting at Equation 5 we obtain that
rR(I,p,t)¼ {@R/@I, @R/@p}

¼ {exp(�0.02t + 0.2p),
0.2I exp(�0.02t + 0.2p)}.

(3) The user defines the n value (number of points
where the measurements should be taken). We
chose n ¼ 2, that is {t0, t1}.

(4) X is obtained by evaluating rR I ; p; tð Þ at points
{t0, t1}. For the same points G ¼ (lij) ¼ [{1,
exp(�|t0� t1|)}, {exp(� |t0� t1|), 1}].

(5) Now S ¼ s2 G is computed (for this example
s ¼ 2 is taken) and then M ¼ XT S�1 X is
calculated.

(6) Finally, the user chooses a value for t0 and
then the D-optimal design will be {t0, t1}, with
t1 the value that leads det|M| to a maximum.
For instance, if we choose t0 ¼ 0.5 d the best
value for t1 is t1 ¼ 2.4 d. This means that the
more appropriate time to take the second mea-
surement is t1 ¼ 2.4 d after the acute intake
happened.

OPTIMAL DESIGN AND MATHEMATICAL MODEL FOR BIOASSAY PROGRAMS

3 of 7



The previous method has been used for developing
a software called Optdesign. It has been implemented
as a Mathematica (Wofram Research, Inc., Cham-
paign, IL, USA) package. It can be applied along
with BIOKMOD(6) to establish a bioassay programs
using the ICRP models. These recourses are avail-
able at http://web.usal.es/guillermo.

APPLICATIONS

In this section, some applications of Optdesign are
described. These examples, including the informa-
tion about the method of the measurements (mini-
mum detectable activity, precision, etc.) are based on
IAEA 1996(10).

The models described here can be expressed by
R(I, b, t) ¼ Ir(t, b), where b ¼ p (being p the
AMAD value) in Example 1 and b ¼ f1 (being f1

the fraction absorption) in Example 2.
We have found that the D-optimal designs will

depend neither on I nor on s2, but they do depend
on non-linear parameter p or f1.

The first measure should be made as soon as pos-
sible. In both examples, the first measurement is
taken at t0 ¼ 0.5 d.

Example 1: Lung counter applied to the estimation
of uranium intake by inhalation

A worker has accidentally intaken by inhalation an
unknown I quantity of UO2 being the AMAD p also
unknown. We wish to estimate I measuring the
uranium lung content using a lung body counter
with s ¼ 1.8 Bq. It will be assumed that the worker
has not previously been exposed to significant
uranium intakes.

Note: The disintegration constants can be assumed
‘0’ for all uranium isotopes because their half-lives
are too long. The AMAD p value is expected in the
range between 1 and 10 mm.

In this case the unknown variables are I and
AMAD p. To define the optimal design, the first
step to obtain the lung retention function RLung

(I, p, t) for these kinds of radioactive aerosols
(Equation A3). It can be made with BIOKMOD
choosing metabolism type S.

We have used p ¼ p0 ¼ 5 mm as the initial value
for this parameter when computing optimal designs.
The designs obtained taking an initial value p0 ¼
5 mm have proved to be very robust with respect to
this choice, giving very high efficiencies in every case.

The designs computed for different number of
sample points are shown in Table 1. Mimicking the
real situation, the function forces the distance
between samples to be at least one day.

For big values of r, which in practice mean inde-
pendent observations, D-optimal designs tend to be
a two-point design. When forcing the several points

to be different what we obtained is a ‘two-nucleoid’
design, each nucleoid composed by a set of points
with the minimum possible distance between them.
For instance, for r¼ 100, the six-point design (0.5, 5,
69, 77, 84, 92), i.e. the first two observations as soon
as possible and the rest around 70 d later, being one
day the distance between them, i.e. the (fixed) mini-
mum distance between samples defined in function
Doptize from the package Optdesign.

Non-linear estimations of the parameters were
made for all the designs in Table 1. To test the
behaviour of the standard error of these estimations
a 10,000 runs simulation was performed for every
case, allowing for normally distributed random
errors with corresponding covariance matrix and
taking I ¼ 10,000, p ¼ 6 (different from the initial
value p0 ¼ 5 used for the computations of the opti-
mal designs) and s2 ¼ 3. The standard error for the
estimation of I and for p was computed for the
different designs. Table 2 shows the evolution of
these errors that decrease increasing the number of
measurements.

This information should be used to decide the
number of measurements that should be taken. It
can be seen that the decay in the standard error is
more noticeable in the first designs, while is not so
important in the last ones. That means that, always
depending on the aim of the experiment and the
practitioner’s opinion, in many cases it will be
enough to choose one of the intermediate designs,

Table 1. Results of the D-optimal designs for uranium
retention (solubility S and q ¼ 1) in the lungs as function

of n (number of points used for the estimation).

n Days after the intake happened

2 0.5 69
3 0.5 65 73
4 0.5 61 69 77
5 0.5 58 66 73 81
6 0.5 5 69 77 84 92
7 0.5 5 66 74 81 88 95
8 0.5 4 9 72 80 87 94 102
9 0.5 4 8 12 77 84 91 98 106

10 0.5 4 8 12 74 81 88 95 102 109
11 0.5 4 8 65 72 78 85 91 97 104 111

Table 2. Relative standard error (%) for estimation of the
parameter vs. n (number of points in the D-optimal design
used for the estimation) for parameters I and AMAD p from

model for the uranium lung retention.

n 3 4 5 6 7 8 9 10 11

I 9.0 8.2 7.8 7.5 7.2 6.9 6.7 6.6 6.5
p 10.8 9.9 9.4 9.1 8.6 8.5 8.4 8.3 7.8
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since the gain in accuracy when taking more samples
is not so prominent.

Example 2: Whole-body counter applied to
estimation of 60Co intake by ingestion

An adult male has been exposed to a simple acciden-
tal intake by ingestion of 60Co being both I and the
fractional absorption f1 unknown. The aim is to
estimate I using a whole-body counter with s ¼ 10
Bq. It will be assumed that the individual has not
been previously exposed to a negligible 60Co intake.

In this case the unknown variables are I and f1

where 0
 f1
 1 being 0.1 its most probable value.
To define the optimal design we need to obtain the
whole-body (Wb) retention function RWb(I, k, t).
The biokinetic 60Co model(4) does not involve recy-
cling and RWb(I, k, t) has the pattern given by Equa-
tion (A4) being k ¼ lB ¼ f1 lSI/(1� f1). We want to
define the optimal design to establish the best times
ti to make the following measures. The program
Optdesign can be used for obtaining the ti values.

The three-point D-optimal designs for different
values of f1 are shown in Table 3 proving that the
optimal designs are very robust with respect to the
election of the initial value for parameter f1.

DISCUSSION

In the case of an acute internal exposure for an
individual, bioassays are usually applied to estimate
the intake I (unknown). We need to know other
parameters such as AMAD p or f1 to evaluate the
effective dose, parameters that are usually unknown.
We have described a method, and developed soft-
ware that applies D-optimal designs for such estima-
tion. A set of times where to perform the bioassays is
given as a solution. However, on each particular
case, the practitioner should decide the number of
measurements to be taken. Some factors may influ-
ence this decision: undoubtedly the bigger the design
is the more accurate the estimations will be, but on
the other hand there are some reasons that can lead
to smaller designs, depending on how long one can
wait to get the results, the health and availability of
the person, the economic cost of each bioassay, etc.
A proper utility function taking into account all

these reasons (and possibly different ones) may be
the right tool to choose the ‘best’ design for a par-
ticular case. Another factor to be considered is that
according to the first measurements, the retention
predicted for later measurements could be below
the lower detection limit of the measured system.

The study of the different possibilities to choose
the right one for a specific problem could be the
subject of a future work.
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APPENDIX A—SOLVING THE ICRP
MODELS AS A FUNCTION OF SOME
PARAMETERS

The retention function Rm(t) for a kind of bioassay
m (e.g. lung or whole-body retention) as function

Table 3. Results of D-optimal designs for 60Co whole-body
retention varying the initial value of f1.

f1 Days after the intake happened

0.05 0.5 4.00 7.04
0.10 0.5 3.97 7.01
0.15 0.5 3.94 6.99
0.20 0.5 3.91 6.96
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of I and the AMAD p after a single intake I, by
inhalation, at t ¼ 0. It can be shown(5) that

Rm tð Þ ¼ I
X

j;v

IDFj pð Þcj;ve�dj;vt ðA1Þ

being IDFj (p) the initial deposition fractions as
a function of the AMAD p, cv and dv are the
coefficients obtained solving the model for the
specific case.

The IDFj(p) values, with j ¼ {1, . . ., 12} (Table 4),
may be either calculated following the procedure
described in ICRP 66(2) or obtained from Annex F
of ICRP 66(2). ICRP 66(2) already gives the proce-
dure to obtain what we called the initial deposition
derivated fraction IDDFk(p), being k ¼ {AI,
bb(fastþseq), bb(slow), BB(fastþseq), BB(slow), ET2, ET1},
which involves large algebraic expressions. Table A1
shows the relationships between IDFj (p) and
IDDFk(p). They have been established using Table
17.B of ICRP 66(2).

We have found that the IDDF parameters in the
range of interest of the AMAD p [0.5 mm, 20 mm], for
the reference worker (similar expressions can be
obtained for other kinds of population) may be fitted
using least squared estimators as follows:

IDDFAI pð Þ � 0:12819e�0:17011p;

IDDFbb fastþseqð Þ pð Þ � 0:010074e�0:087894p;

IDDFbb slowð Þ pð Þ � 0:021284e�4:3533p

þ 0:00921e�0:14724p;

IDDFBB fastþseqð Þ pð Þ � 0:017174e�0:057783p

� 0:017174e�0:56678p;

IDDFBB slowð Þ pð Þ � 0:011084e�0:12358p

� 0:011084e�1:11147p;

IDDFET2 pð Þ � 0:45501e�0:016182p

� 0:45501e�0:63700p

IDDFET1 pð Þ � 0:37714e�0:0083037p

� 0:37714e�0:57901p ðA2Þ

The retention function Rm(I, p, t) can be obtained
as a function of I and p using Equation (A1), and the
approximation given by Equation (A2) with the rela-
tionship established in Table A1. Then

Rm I ; p; tð Þ ¼ I
Xq

r¼1

Are
arpþdrt ðA3Þ

being Ar, ar and dr the coefficients for the specific
case. It can be obtained for most isotopes and kinds
of bioassays with BIOKMOD(6).

In other occasions we can be interested in obtain-
ing the Rm(I, k, t) as a function of I and k, where

k represents any parameter of the model (e.g. the
fraction absorption f1). The analytical expression of
Rm(I, k, t) can be obtained only in particular cases.
However, there are many practical situations in
which this is feasible. For instance, an analytical
solution as function of rate transfer parameters kij

can be obtained for models that do not involve
recycling. In these cases the system can be decom-
posed in catenary branches(5). This condition is veri-
fied by many elements: all of them where the ICRP
30 metabolic model structure (Figure A1) is still
applicable.

In these cases the analytical solution can be
obtained using the method described by Sánchez
and López-Fidalgo(5) or using the equation for solv-
ing catenary systems described in Skrable et al.(11) It
has the pattern given by

Rm I ; k; tð Þ ¼ I
Xq

r¼1

Ar kð Þear kð Þt ðA4Þ

Table A1. Compartments where the radioactive aerosols
intake by inhalation are deposited and relationship between

IDF and IDDF.

Compartment IDF vs. IDDF

1 AI1 IDF1(p) ¼ 0.3 IDDFAI(p)
2 AI2 IDF2(p) ¼ 0.6 IDDFAI(p)
3 AI3 IDF3(p) ¼ 0.1 IDDFAI(p)
4 bb1 IDF4(p) ¼ 0.993 IDDFbb(fastþsec)(p)�

0.007 IDDFbb(slow)(p)
5 bb2 IDF5(p) ¼ IDDFbb(slow) (p)
6 bbseq IDF6(p) ¼ 0.007 IDDFbb(fastþsec)(p)þ

IDDFbb(slow)(p)
7 BB1 IDF7(p) ¼ 0.993 IDDFBB(fastþsec)(p)�

0.007 IDDFBB(slow)(p)
8 BB2 IDF8(p) ¼ IDDFBB(slow)(p)
9 BBseq IDF9(p) ¼ 0.007 IDDFBB(fastþsec)(p)þ

IDDFBB(slow)(p)
10 ET2 IDF10(p) ¼ 0.9995 IDDFET2(p)
11 ETseq IDF11(p) ¼ 0.0005 IDDFET2(p)
12 ET1 IDF12(p) ¼ IDDFET1(p)

Figure A1. Systemic compartment for elements with ICRP
30 metabolic model structure (compiled in ICRP 2001(1)).
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being

Ar kð Þ ¼ brk

c1r þ c2rk þ c3rk2 þ . . .
;

ar kð Þ ¼ d1r þ d2rk

where k is the unknown transfer rate of the model
that we want to obtain by fitting.

The method can be extended to model where
I, p and k are unknown combining Equations (A3)
and (A4).
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