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FITTING BIOASSAY DATA AND PERFORMING UNCERTAINTY
ANALYSIS WITH BIOKMOD

Guillermo Sanchez*

Abstract—We have developed a computer code called BIOK-
MOD that we have applied to analyze several sources of
uncertainties in the evaluation of internal exposures using
bioassay data: (1) Multiple constant and random intakes in
occupational exposures taking into account periods without
intake (weekends, holidays, etc.) are evaluated, and they are
compared with chronic intakes showing that the chronic
approximation is not always good; (2) An analytical method to
evaluate the statistical uncertainties associated with the bioki-
netic model is described; and (3) Non linear techniques are
applied to estimate intakes using bioassay data, where not only
the quantities taken in are assumed unknown but also other
non linear parameters (AMAD, f1, etc). The methods described
are accompanied with examples. Some of the most usual
features of BIOKMOD can be run directly, using BIOKMOD-
WEB, at the Web site: http://www3.enusa.es/webMathematica/
Public/biokmod.html.
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INTRODUCTION

BIOKINETIC MODELING is widely used in internal dosimetry
to evaluate bioassay data. All current International Com-
mission on Radiological Protection (ICRP) models, com-
piled in the ICRP Database of Dose Coefficients (ICRP
2001), can be represented by compartmental systems
with constant coefficients. The conceptual model used by
ICRP is represented in Fig. 1. It can be summarized as
follows. The human body can be divided in three
systems:

1. The human respiratory tract model (HRTM). This
model is applied for modeling the intake of radioac-
tive aerosols by inhalation. The detailed description is
given in ICRP 66 (1994). If a person inhales instan-
taneously a quantity I, it is deposited directly in some

compartments of the HRTM. The fraction deposited
in each compartment is called the initial deposition
fraction or IDF. It is a function of activity median
aerodynamic diameter (AMAD), which includes size,
shape, density, and anatomical and physiological
parameters, as well as various conditions of exposure.
The IDF values may be calculated either following
the procedure described in ICRP 66 (1994) or ob-
tained from Annex F of ICRP 66 (1994). The general
model of the HRTM is common to any element,
except that the absorption rates {spt, sp, st}, which are
related to the chemical form of the element, differ.
ICRP gives default values of absorption rates accord-
ing to types F, M, or S (fast, moderate, and slow,
respectively).

2. The gastrointestinal tract (GI). Modeling the intake of
particles in the GI tract follows the model provided in
ICRP 30 (ICRP 1979). Particles can be introduced in
the GI tract directly by ingestion or from the respira-
tory tract (RT). Deposition is in the stomach (ST).
Part or all the flow is transferred, through the small
intestine (SI), to the blood (B). The rate transfer from
SI to B is given by �B � f1 �SI/(1�f1), where f1 is the
fraction of the stable element reaching the blood (or
body fluids). If f1 � 1 all flows from the stomach and
is transferred to B. The value of f1 is associated with
the elements and their chemical form. The GI tract
model will be replaced by the human alimentary tract
model (HATM), which is not published yet.

3. Systemic compartments. These are specific to an
element or groups of elements (ICRP 2001). ICRP 78
(1997) establishes three generic groups: (i) hydrogen,
cobalt, ruthenium, cesium, and californium; (ii) stron-
tium, radium, and uranium and; (iii) thorium, neptu-
nium, plutonium, americium, and curium. For other
elements not included in ICRP 78, the ICRP 30 model
is applicable, and they have the same generalized
compartmental model as group (i). For the elements
of each group the same model is applied although
some parameters are specific to the element. From a
mathematical point of view we can establish two
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groups: a) elements whose biokinetic model does not
involve recycling, this includes the group (i) and the
elements where ICRP 30 is still applicable; and b)
elements whose biokinetic model involves recycling,
which includes group (ii) and (iii).

A few computer codes have been developed to
estimate intake and calculate internal dose using bioassay
data. The main characteristics of most of them are
summarized by Ansoborlo et al. (2003); perhaps the most
complete is IMBA (Birchall et al. 2003). We have
developed a code called BIOKMOD. It has the following
features, which to our knowledge are not included in any
other:

1. It gives analytical and numerical solutions (other
codes only give the numerical). Even the solutions
can be given as function of some parameters. The
accumulated disintegrations in a compartment or re-
gion can be computed exactly by analytical integra-
tion, what is more precise than the method of the
mean resident time (Loevinger et al. 1988) often
applied for other codes;

2. Apart from acute, chronic and multi-inputs, it can
practically be used for any kind of continuous inputs
(exponentials, periodic, etc.), even for random inputs;

3. The intakes can be estimated fitting bioassay data
where not only the intake quantities but also other

parameters (AMAD, f1, etc.) can be assumed un-
known;

4. Analytical expressions instead of simulations can be
used for sensitivity and uncertainty analysis; and

5. The user can easily build compartmental models
which automatically generate the system of differen-
tial equations and their solutions (Sanchez 2005).

To run BIOKMOD with all capability it is necessary to
use Mathematica (Wofram Research, Inc., Champaign, IL);
however, some of the most usual features of BIOKMOD can
be run directly at http://www3.enusa.es/webMathematica/
Public/biokmod.html.

We have applied BIOKMOD to the evaluation of
internal exposures using bioassay data. In particular, we
refer to the random intakes in occupational exposures
and their implication in the bioassays, the application of
analytical methods to evaluate the uncertainties associ-
ated with the biokinetic model parameters, and the use of
non-linear regression techniques to the bioassay data
fitting. The methods described are accompanied with
examples.

SOLVING THE ICRP MODELS

The mathematical criteria applied by BIOKMOD to
obtain the content qi(t) at compartment i and to compute
the intake retention functions rm(t) for different kinds of
bioassays m, with m � {lung retention, daily urine
excretion, thyroid content,. . . }, are described in Sanchez
and Lopez-Fidalgo (2003). Below we summarize some
details of these equations that we will need later.

The content qi(t) in each compartment i at time t,
after an acute intake I at t � 0, is given by

qi�t� � Iui�t�, (1)

where ui(t) is usually called the unit impulse-response
function. It can be represented by the following pattern

ui�t�

� Fi�ll , . . . , lm, sp , spt , st , fl , �l , . . . , �n , hl , . . . , hr , �R, t�,

(2)

where li denote the rate transfers for HRTM compart-
ments, �i the rate transfers for GI compartments, h1,. . . ,
hr the rate transfers for systemic compartments, and �R is
the decay constant of the isotope; ui(t) is a sum of
exponentials, that is

ui�t� � �
r�1

l

are
�hrt. (3)

The predicted value for a kind of bioassay m after an
acute input “1” at t � 0 is obtained by the sum of the

Fig. 1. Conceptual ICRP model applied for particle intakes by
inhalation. The particles are deposited in some compartments of
the respiratory tract (RT). From the RT the flow goes to the
stomach (ST) or to the blood (B). “Rest of Body” represents the
systemic compartments. The detailed flow diagram is specific to
each kind of element. The dashed arrows mean that the flow can
be followed this way or not, depending on the characteristic of the
element.
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content of one or several compartments. It will also be a
sum of exponentials:

rm�t� � �
v�1

l

cve
�dvt, (4)

where cv and dv are the coefficients obtained solving the
model for the specific case.

In the case of inhalation eqn (4) can be written as

rm�t� � �j,vIDFj�p�cj,ve
�dj,vt, (5)

where p is the AMAD value in �m.
The retention function Rm(t) for a single or acute

intake I0 at t � 0 is given by

Rm�t� � I0rm�t�. (6)

The retention function RCm(t) for a continuous intake I(t)
can be obtained using the convolution theorem:

RCm�t� � �
0

t

I���rm�t � ��d�. (7)

The chronic intake is a particular case of the continuous
intake where I(t) � Id (daily rate intake constant) for 0 �
t � T.

The analytical expression of rm(t) given by the
program cannot be checked directly with other programs
because there are no others with this capability. So, we
have compared the numerical solutions for acute intakes
given by BIOKMOD for different times with the solu-
tions given in ICRP 78 and in Potter (2002) obtaining a
very good match.

MULTIPLE CONSTANT AND RANDOM
INTAKES

In this section we will analyze two types of intakes:
multiple constant and random. They are not included in
other codes, at least with the extensions with which they
are treated by BIOKMOD; however, they represent
situations that happen frequently in the real world.

Multiple constant intakes
If we assumed multiple single intakes {I1,. . . , Ii,. . . ,

In} where Ij represents the intake that happens on day j, then
the retention function RMm(t) on day t is given by

RMm�t� � I1rm�t� � I2rm�t � 1� � · · · � Itrm�1�

� �
j�1

t

Ijrm�t � j � 1�. (8)

In many situations the intake Ij happens for a few hours
every day. However, from a practical point of view it can

be assumed that Ij is an acute intake. But we are
interested in considering {I1,. . . , Ii,. . . , In} as multiple
constant intakes where each Ii occurs day ti during time Ti

(usually a shift). This case was studied by Bertelli and
Lipsztein (1987) using the old models included in ICRP
30 (1979). We have expanded to include the current
ICRP 2001 models using variable Ti periods.

The retention function rcm(t) for a constant intake
I � 1 for 0 � t � T, which ceases at t � T, is given by

rcm�t, T� �
1

T�
0

t

rm���d� for 0 � t � T

rcm�t, T� �
1

T�
T�t

t

rm���d� for t � T. (9)

Then, assuming multiple constant intake, the reten-
tion function RMCm(t) can be computed as follows:

RMCm�t� � I1rcm�t, T1� � I2rcm�t � 1, T2� � · · ·

� Itrcm�1, Tt� � �
j�1

t

Ijrcm�t � j � 1, Tj�. (10)

We can compare the retention using these equations with
those obtained assuming a chronic intake. This compar-
ison will be shown later in example 1.

Random intakes
In real situations, for workers being exposed to

radioactive aerosols during the working days, the indi-
vidual daily intake I is usually a random variable. In a
previous article (Lopez-Fidalgo and Sanchez 2005), we
found that when the daily intake {I1,. . . , Ij. . . , In} can be
fitted by a log-normal distribution then the retention
function for random intake, called RAm(t), can be approx-
imated by

RAm�t� � �I �
j�1

t

rm� j� 	 z
I��
j�1

t

rm
2 � j� , (11)

where

�̂I �
1

N
�
i

II ;


̂I
2 �

1

N � 1
�
i

�Ii � �̂I�
2;

and z is the 100 (� � 1)/2 – the quantile of the standard
normal distribution.

66 Health Physics January 2007, Volume 92, Number 1



We realize that eqn (11) can be applied even if
{I1,. . . , Ij. . . , In} is not a lognormal distribution. In fact,
if in eqn (8) I is a random variable, then Ij r(t�j � 1) will
usually take small values, and considering a large num-
ber (�100) of single inputs Ii, then eqn (8) will be a sum
of random and independent variables. In this case eqn
(11) can be used without requiring that {I1,. . . , Ij. . . , In}
be fitted to any distribution. It is a consequence of the
Central Limit Theorem. We have also checked it by
simulation using different distributions to generate
{I1,. . . , Ij. . . , In} and testing that eqn (11) is verified.

The following example (based on data from the
Juzbado Uranium Fuel Fabrication Plant) shows how
these developments can be applied.

Example 1. A worker has been exposed to UO2

(AMAD 5 �m and type S) radioactive aerosols during
the last 2,000 d. He works 5 d per week 8 h a day; he also
has 4 holiday weeks per year (with these criteria 2,000
days are 1,330 working days). It is estimated that in this
time he has taken in 13,300 Bq uranium. It is also known
from historical data that the relative standard deviation of
the daily intakes for workers in this area is about 20%,
which is 
I/�I � 0.2. We want to calculate the lung
retention evolution. Regular weekends and holidays will
be assumed.

The lung retention contents, RMCLung(t), can be
obtained applying eqn (10) with Ij � Î � 13,300 Bq
U/1,330 working days � 10 Bq U/working day and T �
Ti � (8 h)/(24 h) d � 1/3 d. It can be also computed
assuming a chronic daily intake of Id � 13,300 Bq
U/2,000 d � 6.65 Bq U/d, then RLung(t) � Id �t

0rLung(t)dt.
Both solutions are represented in Fig. 2. It can be
observed that the differences between both methods are
negligible in the middle of periods between two holiday

seasons, and largest just after the holiday periods, but
even in these cases they are not too important (lower than
5%). However, if we consider they are random inputs,
then applying eqn (11), with �I � 10 Bq/working day
and 
I � 0.2 � 10 Bq U/d � 2 Bq U/working day, we
obtain the solution shown in Fig. 3. We find that the
differences between the random and the chronic input
can be very important. For instance, on day 2,000 after
the first intake, the estimated lung content for chronic
intake is given only for one value RLung(2000) � 240 Bq
U. However, the predicted retention will be better given
as an interval than a value. So as

�
j�1

2000

rLung� j� � 23.97

and

�
j�1

2000

rLung
2 � j� � 574.70,

then the estimated lung content is RALung(2000) � 10 �
23.97 	 2 � 2 
574.70 Bq U (computed with a
confidence interval of 95%, z � 2), and, hence, 143.8 Bq
U � RALung(2000) � 335.6 Bq U.

Remark: The holiday periods and the random intake
effects should be taken into account when evaluating the
bioassay analysis.

SENSITIVITY AND UNCERTAINTY ANALYSIS

The estimation of isotope content in a compartment
or region involves many uncertainties even assuming that
the ICRP metabolic models are a good representation of
the real behavior of the particle intake in the human
body. This is so because most of the true values of the

Fig. 2. Predicted lung retention for a worker being exposed to
uranium aerosols (type S, AMAD 5 �m, and �R � 0). The
smoothed line corresponds to a daily chronic intake. The bold line
represents the same total quantity taken in, but the effect of the
weekends and holiday seasons without exposure has been taken
into account.

Fig. 3. Predicted lung retention probability bands (confidence
interval 95%) for a worker being exposed to a random intake of
uranium aerosols (type S, AMAD 5 �m, and �R � 0). Periods
without exposure have been taken into account.
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parameters in a real situation are unknown. In these cases
the parameters usually applied are the reference worker
values given by ICRP for a reference worker.

Assume r(t) expressed as function of certain param-
eters {k1, . . . , kr} with their associated uncertainties:
{u(k1), . . . u(kr)}, then

r�t� � F�k1 , . . . , kn , t� 	 uC�t�, (12)

where uC(t) is he combined standard uncertainty.
Assuming that {k1, . . . , kr} are uncorrelated and

taking the first-order Taylor series terms of F(k1,. . . , kn,
�, t), then uC(t) can be evaluated using

uC
2 �r�t�
 � �

i�1

r ��F

�ki
�2

u2�ki�. (13)

This is the expression used by BIOKMOD for computing
uC(t).

Of course, eqn (13) can be only applied when we
can obtain the analytical solution of the model as
function of the parameters {k1, . . . , kr}, but it is only
possible when the model does not involve recycling and
in some particular cases of models with recycling. No
recycling models can be discomposed in catenary
branches (Skrable et al. 1974); then, when {ki � kj}, the
solution can be expressed as function of the parameters
{k1, . . . , kr}.

The HRTM is a non recycling model. So, eqn (13)
can be use to study the HRTM uncertainties as shown in
the example below.

Example 2. We want to evaluate for a reference
worker the lung retention after an acute intake (I � 1 at
t � 0) of radioactive aerosols type S and �R � 0
assuming a relative standard deviation of 10% of the
IDFi (that is 
i/IDFi � 0.1).

The lung retention rLung(t) according with eqn (5) has
the following pattern:

FLung�t, p� � A1�t�IDFA1�p� � A2�t�IDFbb�fast�sec��p�

� A3�t�IDFbb�slow��p� � A4�t�IDFBB�fast�sec�

� A5�t�IDFBB�slow��p�, (14)

where IDFi(p) are the initial deposition fractions, which
depend of the AMAD p, in the regions i � {AI, bbfast�sec,

bbslow, BBfast�sec, and BBslow}. These regions are defined
in ICRP 66.

Ai(t) is a sum of exponential terms whose expres-
sions can be obtained by BIOKMOD solving the model
for the specific case. In our example (reference worker
and type S) they are:

● A1(t) � 1.6522 � 10�7 exp(�110.1 t) � 4.16099 � 10�6

exp(�102.1 t) � 0.0003030 exp(�100.12 t) � 0.0005992
exp(�100.101 t) � 0.00008317 exp(�100.10 t) �
0.00001663 exp(�100.1 t) � 0.0001654 exp(�10.00 t) �
0.004165 exp(�2.0001 t) � 0.3033 exp(�0.0201 t) �
0.5998 exp(�0.0011 t) � 0.08326 exp(�0.00022 t) �
0.01665 exp(�0.0001 t);

● A2(t) � �0.0002477 exp(�110.1 t) � 0.001239
exp(�102.1 t) � 6.9860 � 10�6 exp(�100.1 t) � 0.2480
exp(�10.00 t) � 1.2400 exp(�2.00 t) � 0.00699
exp(�0.0001 t);

● A3(t) � �1.2565 � 10�6 exp(�0.1 t) � 8.7325 � 10�6

exp(�102.1 t) � 0.0010 exp(�100.13 t) � 6.9860 �
10�6 exp(�0.1 t) � 0.001258 exp(�0.0001 t) �
0.008741 exp(�2.0001 t) � 1.0020 exp(�0.0301 t) �
0.0069930 exp(�0.0001 t);

● A4(t) � 0.0009910 exp(�110.1 t) � 6.9860 � 10�6

exp(�100.1 t) � 0.9920 exp(�10.0001 t) � 0.006993
exp(�0.0001 t); and

● A5(t) � �6.9860 � 10�6 exp(�110.1 t) � 0.0009980
exp(�100.13 t) � 6.9860 � 10�6 exp(�100.1 t) �
0.006993 exp(�10.0001 t) � 0.9990 exp(�0.0301 t)
� 0.006993 exp(�0.0001 t).

The IDFi parameters have associated uncertainties
that we denote respectively by u1, u2, u3, u4, and u5. Then,
replacing eqn (14) in eqn (13), the combined uncertainty
is obtained:

uLung�t, p� � ��
i

5

Ai
2�t�ui

2

If we assume a confidence interval of 95%, ui � 2

i, and as 
i � 0.1 IDFi, then

uLung�t, p� � 0.1 
 2��
i

5

Ai
2�t�IDFi

2�p� ,

and, hence,

rLung�t, p� � FLung�t, p� 	 0.2��
i

5

Ai
2�t�IDFi

2�p� .

(15)

The solution for AMAD 5 �m is plotted in Fig. 4.
Remark: It can be observed that small differences in

the IDFi values with respect to the reference values can have
an important influence on the lung retention predicted.

FITTING BIOASSAY DATA

The bioassay measurements can be used to estimate
intake, and then to infer the internal dose.
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Let’s suppose a single intake I0 (unknown) at t � 0
of radioactive particles, whose characteristics (AMAD,
solubility, etc.) are known, by a worker with a metabo-
lism that responds to the ideal model for the standard
worker. At time t after the intake, a bioassay is made
obtaining a measurement m, with negligible uncertain-
ties. Then, in eqn (6) it will be verified that m � RA(t) and
hence I0 � m/r(t); in this case the intake I0 will be known
with only one measurement. This is an unrealistic situa-
tion, however; in the real world the evaluation of internal
exposures using bioassay data involves a lot of uncer-
tainties. In fact, in an intercomparison exercise where the
same cases, using the same data, have been evaluated by
different experts, large discrepancies have been obtained
(Doerfel 1999).

If all parameters (AMAD, absorption parameters,
etc.) of the model, except the quantity intakes, are
assumed to be known, the only uncertainties will be those
of the measurements. The linear statistical model can be
applied to estimate Î and its associated uncertainty uI

(e.g., Skrable et al. 2002; Potter 2002) obtaining

Î �

�
i�1

N

rC,j�ti�
mi

ui
2

�
i�1

N rC,j
2 �ti�

ui
2

, uI �
1

��
i�1

N rC,j
2 �ti�

ui
2

, (16)

where ti is the time from the start of the intake to the
measurement I; mi and ui are the measurement and their
associated uncertainties (calculated with the same confi-
dence level as uI); rC,j(t), where C � {A (acute) or Cr
(Chronic)} is the retention function, with I0 � 1 or Id �
1, associated with measurement mi; and j is the type of
bioassay (note: different kinds of bioassays can be
applied simultaneously).

Other authors recommend (ICRP 2006) the maximum
likelihood method, which uses eqn (17) instead of eqn (16)

ln�Î� �

�
i�1

N �ln�mi/rC,j�ti�


�ln SFi�
2 �

�
i�1

N 1

�ln SFi�
2

, (17)

where SFi is the scattering factor for mi. If the bioassay
data are log-normally distributed, then SF is the geomet-
ric standard deviation (SG) of the log-normal distribu-
tion.

Most of the codes, including BIOKMOD, use eqn
(16) or (17). The chi-squared test (�2) should be used to
estimate the goodness of the fitted data (ICRP 2006).

BIOKMOD also has other possibilities. It can be
assumed that not only the intake I but also other parameters
{k1, . . . , kr} are unknown (AMAD, f1, etc.); then it applies
eqn (18) for fitting the bioassay data (minimizing �2):

� Î, k̂1 , . . . , k̂r�:Arg Min
�l,k1 , . . . , kr



 ��
i�1

N �IrC�ti , k1 , . . . kr� � mi

2

ui
2 �, (18)

Restrictions:

I � 0, k1 (min) � k1 � k1 (max), . . . kr (min) � kr

� kr (max).

If the bioassay data are log-normally distributed, then
eqn (19) is used:

� Î, k̂1 , . . . , k̂r�:Arg Min
�I,k1 , . . . , kr



 ��
i�1

N �ln�IrC,j�ti , k1 , . . . kr�
 � ln�mi
�
2

SGi
2 �, (19)

Restrictions:

I � 0, k1 (min) � k1 � k1 (max), . . . kr (min) � kr

� kr (max).

The minimization of eqn (18) or (19) is a problem of
nonlinear optimization. BIOKMOD applies the algo-
rithms available from Mathematica (http://documents.wolfram.
com/mathematica/functions/AdvancedDocumentationN
Minimize; accessed 15 June 2006); these are probably the
state of the art in optimization.

Identification problems
On some occasions when using the same bioassay

data, several solutions, which are mathematical equivalents,

Fig. 4. Average predicted lung retention (central line) for a single
intake of 1 Bq U at t � 0 (type S, AMAD 5 �m, and �R � 0). The
dashed lines represent the confidence interval (95%) associated
with the IDFi uncertainties (assuming 
i/IDFi � 0.1).
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can be obtained. For instance, for substances of type F
(rapid absorption) and f1 �1, almost all particles deposited
in the respiratory tract (excluding those returned directly to
the environment) are transferred quickly into the blood (B).
This means that in this case an intake I0 at t � 0 of
radioactive aerosols of AMAD p can be approximated by an
instantaneous input bB in B at t � 0 given by

bB � I0 �i IDFi�p�, (20)

where �iIDFi(p) includes all IDF factors except IDFET1.
If I0 and p are unknown, and therefore IDFi values

will also be unknown, then eqn (20) will be verified for
an infinite number of values. So if we replace bB(t) in eqn
(6) using eqn (20), it will be found that bioassay data mi

can be fitted to different values of I0 and p. However, as
I0�iIDFi(p) � constant, then the content qi(t) in each
compartment i will be the same, and hence the committed
effective dose E will be also the same. For instance, if E
has been obtained by fitting an intake I1 assuming an
AMAD p1 and the true (unknown) value is I2 with
AMAD p2, then it will be verified that I1�iIDFi(p1) �
I2�iIDFi(p2) and E1 � E2 where E1 � I1 DCF(p1) and E2

� I2 DCF(p2), where DCF(pi) are the dose conversion
factors corresponding to an AMAD pi. Case 1 below
shows an example of this kind.

In the same way, an intake I0 by ingestion with f1 �
1 is practically equivalent to an instantaneous input bB �
I0 at t � 0. These conclusions are extended to inputs that are
not acute as a consequence of the convolution theorem.

APPLICATIONS

In the following cases we will use BIOKMOD to esti-
mate the intake fitting bioassay data. Case 1 is an example
where different solutions, which are mathematically equiva-
lent, are obtained. In case 2 an accidental exposure happens in
a worker who has been previously exposed to a chronic intake.
Case 3 is an example of multi-response fitting.

Case 1
A researcher has been exposed to a single acute intake of

125I. After the exposure the 125I in the thyroid was measured
(Table 1) (bioassay data taken from French et al. 2003).

The bioassay data have been fitted (Fig. 5) to the
iodine thyroid retention function assuming AMADs of p1

� 1 �m, p2 � 5 �m, and p3 � 10 �m. The solutions
obtained have been, respectively, I1 � 57,518 Bq, I2 �
41,463 Bq, and I3 � 46,782 Bq. As

d1 � �l IDFi�1 �m� � 0.34665;

d2 � �l IDFi�5 �m� � 0.480875; and

d3 � �l IDFi�10 �m� � 0.426196;

hence I1 d1 � I2 d2 � I3 d3 � 19,938 Bq.
In the same way, the DCFs for 125I are DCF1(1

�m) � 5.3 � 10�6 mSv Bq�1, DCF2 (5 �m) � 7.3 �
10�6 mSv Bq�1, and DCF3 (10 �m) � 6.5 � 10�6 mSv
Bq�1. Therefore, E1 � I1 DCF1 � 0.30 mSv; E2 � I2

DCF2 � 0.30 mSv; and E3 � I3 DCF3 � 0.30 mSv; that
is E1 � E2 � E3.

Case 2
A worker has been exposed from t � 0 to t � 2,000

d to a chronic intake by inhalation of 3 Bq U d�1 of UO2

aerosols type S and AMAD 5 �m. On day t � 2,000, he
accidentally has an intake by inhalation of an unknown I
quantity of UO2. The uranium lung content has been
measured (Table 1) using a lung body counter with a
standard deviation of 15 Bq U. We want to know the
accidental quantity of intake.

Note: The lung measurements have been simulated
using a single intake of 1,700 Bq U with AMAD 7 �m
with a random noise. The lung counters usually measure
the 235U but here it has been converted to give the data in
Bq U. The chronic and the accidental intakes are as-
sumed to be from approximately the same enrichment
(4.4% of 235U).

Fig. 5. 125I thyroid retention function fitted using the experimental
data (case 1 of the main text). The continuous line is actually three
lines superposed corresponding to three combinations of intakes
and AMADs. It can be observed that they are indistinguishable.

Table 1. Bioassay data for Case 1 and Case 2.

Case 1 Case 2

Time after
intake (d)

Thyroid activity
of 125I (Bq)

Time after
intake (d)

Lung activity of
U (Bq)

7 5,143 1 186
14 4,773 5 181
15 4,403 30 161
21 4,070 70 149
28 3,471 120 143
42 2,546 250 113
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If an AMAD of 5 �m is assumed (the recommended
value by ICRP 66 when AMAD is unknown), then eqn
(16) can be applied. The solution obtained is that the
accidental intake was 1,255 	 254 Bq U (computed with
a confidence interval of 95%, z � 2). If it is supposed that
the AMAD is unknown, then eqn (19) is applied obtain-
ing 1,875 Bq U and AMAD 7.8 �m. These are nearer to
the “true” values (1,700 Bq U and AMAD 7 �m). The
solution is represented in Fig. 6.

Remark: If the AMAD value is not really known, the
bioassay data should be fitted taking the AMAD as an
unknown parameter to be fitted. This does not apply for
substances of type F and f1 � 1.

Case 3
An operator has been exposed to a single accidental

intake by inhalation of 60Co. The cobalt form was metal
and oxide. A program (Table 2) of in-vivo monitoring
was carried out 10 d after the event and continued up to
3 y. Urine samples were also taken. Additional informa-
tion: It is recommended to assume that the whole body
and urine measurements be approximated by a log-
normal distribution with a geometric standard deviation
of 1.07 Bq and 1.8 Bq, respectively. (Data from IM 2005
European workshop on individual monitoring of ionizing
radiation, Vienna, April 2005; available at http://
www.ideas-workshop.de; Accessed 15 June 2006.)

The default parameters recommended by ICRP 78 for
cobalt oxide values are AMAD 5 �m, absorption type S, f1

� 0.05. If we applied the chi-squared test (�2), the goodness
of the data fitted is very bad. For this reason we used eqn
(19) assuming that p (AMAD value in �m), the absorption
rates {spt, sp, st}, and f1 are unknown. This is a case where
multiple data sets must be fitted to a nonlinear model. To
avoid a too long time of computation, some restrictions
about the fitted parameters were established. Also the

number of steps to find the minimum of eqn (19) was
limited. The best fit obtained corresponds to 398.5 kBq with
AMAD 5.5 �m, {spt, sp, st} � {10, 90, 0.0007} and f1 � 0.1.
The committed effective dose, E(50), calculated using these
values is 4.5 mSv.

The above solution can be compared to that given in
Annex B of ICRP (2006), where the method applied is
different. The AMAD is assumed to be 5 �m, then eqn
(17) is applied several times: one set with f1 � 0.1 testing
with different combinations of radioactive aerosol types
S and M. The procedure is repeated with f1 � 0.05. The
chosen solution is the one where the chi-squared test (�2)
is the smallest. The computation was made using IMBA.
The solution reported is an intake of 404 kBq and a
committed effective dose, E(50), of 5.0 mSv.

DISCUSSION

The uncertainties in the estimation of the intakes from
bioassay data are caused by a variety of circumstances such
as a limited number of measurements, large natural varia-
tions in individual biological characteristics, uncertainties in
the biokinetic models, and interferences from natural back-
ground radiation. We must also take into account that most
of the biokinetic data are from experiments with animals,
and their application to humans is limited.

In accidental exposures the situation is even more
complex because the characteristics of the source term
(AMAD, breathing rate, f1, absorption rates, etc.) are
often not well-known. On these occasions nonlinear
regression techniques can be applied to estimate the
intakes for fitting the bioassay data. We have shown that
in some cases a set of mathematically equivalent solu-
tions can be obtained.

The values of internal dose estimation when the
uncertainties are included are usually not too big. This is
because usually only one source of uncertainty is taken
into account. But if all uncertainties associated with the

Fig. 6. Predicted lung retention after an acute intake assuming a
previous chronic intake (case 2 of the main text). The dashed line
represents the underlying contribution from the chronic intake.

Table 2. Bioassay data for Case 3.

Time after
intake (d)

Daily urinary
excretion rate of 60Co

(Bq d�1)
Whole body activity of

60Co (Bq)

10 2.39 � 104

14 709 2.92 � 104

17 2.01 � 104

20 1.82 � 104

27 64 2.16 � 104

40 71 1.98 � 104

60 37 2.16 � 104

80 29 1.75 � 104

190 11 1.16 � 104

370 1.7 8.1 � 103

747 4.8 � 103

1,010 2.7 � 103
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bioassay evaluation are taken together, the combined
uncertainty will usually be bigger. For this reason, it is
not rare that large discrepancies are found in the inter-
comparison exercises.

In our experience bioassay data analyses for workers
occupationally exposed to radioactive aerosols are usu-
ally lower than the level of detection limits (LLD) or are
very close to them. If we also take into account that the
intakes are random, then the uncertainties of the dose
estimation using bioassay data will be huge. For this
reason, we think that bioassay monitoring programs
should be used as additional controls, but they should not
be used to estimate internal dose.

When dealing with accidental exposures, bioassay
analysis can very useful. Fortunately, there are very few
cases of this kind and as a consequence there are fewer
experimental data.

Great advances have been made to reduce the uncer-
tainties in accidental exposure analyses. The application of
the optimal experimental design (Lopez-Fidalgo et al. 2005)
can be one way to reduce the uncertainties. Another way
could be simplifying the biokinetic models (many compart-
ments involve many parameters and, therefore, many
sources of uncertainties). In fact, it can be tested that the
committed effective dose is often determined by a very
small number of compartments.

CONCLUSION

There are some good computer codes that can be
applied in the interpretation of bioassay data. We have
developed a new one, BIOKMOD, with some innovations
that can be useful mainly for advanced studies. The standard
version of BIOKMOD is available for free download at the
author’s Web site: http://web.usal.es/guillermo.

Furthermore, there is a Web version (available at
http://www3.enusa.es/webMathematica/Public/biokmod.
html, sponsored by ENUSA Industrias Avanzadas. S.A.),
which can be used wherever an Internet connection exists.

BIOKMOD has been used in the evaluation of
internal exposures using bioassay data: multiple constant
and random intakes in occupational exposures taking into
account periods without intake (weekends, holidays, etc.)
have been described; an analytical method to evaluate the
statistical uncertainties associated with the biokinetic
model has been developed; and non-linear techniques
have been applied to estimate the intakes using bioassay
data.
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