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Abstract: We carry out a complete spatio-temporal characterization of the 
electric field of an ultrashort laser pulse after passing through a diffractive 
optical element composed of several binary amplitude concentric rings. 
Analytical expressions for the total diffraction field in the time and spectral 
domain are provided, using the Rayleigh-Sommerfeld formulation of the 
diffraction. These expressions are experimentally validated. The spatio-
temporal amplitude and phase structure of the pulse are measured at 
different planes beyond the diffractive optical element using spatially-
resolved spectral interferometry assisted by an optical fiber coupler 
(STARFISH). Our results allow corroborating theoretical predictions on the 
presence of multiple pulses or complex spectral distributions due to the 
diffraction-induced effects by the hard-edge ring apertures. 
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1. Introduction 

The latest advances in our understanding fundamental physical phenomena on the diffraction 
of ultrashort laser pulses by hard-edge apertures open the way to the use of diffractive optical 
elements (DOEs) as a tool for controlling the spatial and temporal features of light pulses. In 
this context, there has been a growing interest in studying diffraction-induced effects due to 
propagating ultrashort laser pulses through binary amplitude DOEs. Several recent works 
have addressed the study of the spectral and temporal characteristics of ultrashort laser pulses 
diffracted by a circular aperture [1–7], serrated apertures [8], single and double slits [9,10], 
Fresnel zone plates [11–14], or DOEs having multiple rings [15,16]. Because in most cases 
the analysis was performed within the spectral or the temporal domain separately, the 
diffraction effects on the incident ultrashort pulse were understood independently. 

In the time domain, the shape of the temporal profiles at a given output plane can be 
determined from the coherent superposition of geometric and boundary wave pulses [6,17]. In 
accordance with the Miyamoto-Wolf theory of the boundary diffraction wave, the boundary 
wave pulse describes a disturbance emerging from the points of the edge of an aperture, 
whereas the geometric pulse represents a wave governed by the laws of geometrical optics [6]. 
Taking advantage of this fact, it is possible not only to characterize the temporal evolution of 
diffracted pulses [1–6], but also to split the incident ultrashort pulse in a train of pulses of 
different peak heights, modify the temporal shape of the instantaneous intensity or vary its 
temporal width, in a controllable manner [18]. Such a temporal manipulation of ultrashort 
laser pulses can produce binary code patterns that might be used, for instance, as optical 
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packet-headers in packet-switched networks and for photonically assisted generation of 
microwave and millimeter waveforms [19]. 

In the spectral domain, the total diffracted field is assessed by the sum of all field 
contributions due to the different spectral components of the pulse by means of e.g. the 
Huygens-Fresnel integral, among other methods. Then, the square modulus of the total 
diffracted field expressed as a wavelength-dependent function can be thought as a spectral 
modifier of the spectrum corresponding to the incident pulse. That is, at a given spatial 
coordinate after the DOE the resultant spectral power is calculated from the multiplication of 
the spectral modifier by the corresponding spectral power of the incident pulse. The above 
relationship was applied to investigate the diffraction of a spatially coherent, polychromatic 
wave at a circular aperture [20], an annular aperture [21] or double slits [22], which showed 
that drastic spectral changes take place near a phase singularity. At such a point, the intensity 
of the diffracted field has a zero value, the phase becomes indeterminate and the field in the 
neighborhood has a complex structure exhibiting dislocation and vortices. Regarding this 
topic, Ponomarenko and Wolf pointed out that spectral shifts toward blue and red directions of 
the spectrum could be associated with different bits of information that can be transmitted 
over appreciable distances, suggesting its use in free-space communication applications [20]. 
Also, in the framework of the Rayleigh-Sommerfeld formulation of the diffraction, different 
changes in the spectrum of a femtosecond pulse originated by diffraction of an ultrashort laser 
pulse through a hard-edge aperture consisting of circularly symmetric transparent rings have 
been reported [16]. In this work it was shown that spectral changes (i.e., split and/or shift of 
the spectrum) in the vicinity of a spectral anomaly or in focal positions can occur as well. 
Note that the possibility of manipulating the output spectrum of an ultrashort pulse by means 
of a suitable DOE design finds application in material processing, ultrafast spectroscopy 
and/or photochemistry. 

However, when space-time coupling occurs one cannot assume that the temporal and 
spatial characteristics of a short pulse are independent [23]. In fact, in most nonlinear 
interactions or focusing processes in ultrafast optics, there is some coupling between the space 
and time features of the pulse. For a binary amplitude DOE having several rings, the spatio-
temporal coupling can appear while focusing the electric field associated with an ultrashort 
pulse along the optical axis. In this case, a characterization of the diffracted field cannot be 
detached from the spatio-temporal analysis. 

In this manuscript, we provide an analytical approach for the spatiotemporal 
characterization of the electric field of an ultrashort pulse after propagation through any 
circularly symmetric binary amplitude DOE. The physical model is developed in the 
framework of the Rayleigh-Sommerfeld theory of the diffraction, allowing us to compute the 
spatio-temporal behavior of the diffracted field both for the on-axis and the off-axis cases. The 
theoretical results are corroborated by experiments. At this point, since there is a marked 
spatio-temporal coupling, traditional methods to measure the temporal profile of short pulses 
on axis (e.g. FROG [24] or SPIDER [25]) or only their spatial profile and wave-front are not 
enough. To this end, other methods have been recently developed, such as STRIPED FISH 
[26], SEA TADPOLE [27], [28] or Shackled-FROG [29]. For instance, by using SEA 
TADPOLE technique the evolution and interference of the boundary waves behind an opaque 
disk and also behind a circular opening has been experimentally demonstrated [30]. In the 
present work, the spatio-temporal coupled amplitude and phase of the diffracted pulse is 
measured at different transversal planes from the DOE using a recently developed method. It 
consists of spatially resolved spectral interferometry assisted by a fiber coupler interferometer 
(STARFISH) [31], also obtaining the spatially resolved spectrum structure. The spatial 
resolution of our technique allows characterizing the spatio-temporal field structure in and 
near the axial foci of the DOE. 

2. Analytical approach 

Suppose we have a circularly symmetric hard aperture consisting of N  transparent rings, with 
N  an integer positive number, illuminated by an ultrashort laser pulse. The pulse can be 
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considered as a set of monochromatic plane waves with various frequencies, propagating in 
the same direction. The polar coordinates ,r θ  are assumed at the input plane, whereas for any 
parallel output plane, located at a distance z  from the aperture, corresponding coordinates 

,R φ  are used. With the help of the first Rayleigh-Sommerfeld diffraction integral an 

approximate analytical expression for the field, ( ), ,mU z R ω , diffracted from the edge of a 

ring under plane wave illumination can be obtained as [16] 

 ( ) ( ) ( ), , , , , ,
m im om

U z R U z R U z Rω ω ω≈ −   (1) 

Where, 

 ( )

2 2 /
/ 0 2 2

/
/ 2 2

/

exp

, ,

im om
im om

im om

im om

im om

r R
z i z r J

c c z r
U z R

z r

ω ω

ω

    +     + =
+

  (2) 

In Eq. (2), imr  and omr  are respectively the inner and the outer radii of the m -th transparent 

ring and ω  is a frequency component of the pulse. The term ( )0J ξ  denotes the Bessel 

function of the first kind with zero order and argument ξ . For the on-axis case ( 0R = ), Eq. 
(1) provides the exact solution for the diffracted field, see Appendix A of [5]. In the off-axis 
region, it holds for points several hundreds of microns away from the propagation axis [16]. 
From the superposition principle, the total diffraction field ( ), ,U z R ω  is assessed by the sum 

of the contributions from each transparent ring, ( ) ( )1 , ,, , N
mm

U z RU z R ωω ==∑ . Hence, the 

power spectrum ( ), ,S z R ω  at points onto the output plane in the vicinity of the optical axis 

can be determined by the well-known expression [20–22] 

 ( ) ( ) ( )
2

0, , , ,S z R S U z Rω ω ω=   (3) 

In Eq. (3), ( )0S ω  is the power spectrum of the incident pulse. It is apparent that using Eq. (3) 

one can study the diffraction-induced spectral changes associated with an ultrashort pulse 
after propagation through the above DOE. That is, for an arbitrary point located at the output 

plane 1z z=  with coordinates 1 1,z R , the function ( ) 2

1 1, ,U z R ω  modifies the power spectrum 

of the incident pulse accordingly. In addition, by numerically solving the integral 

( ), ,S z R dω ω∫  over the bandwidth of the pulse, spatial broadening effects in the irradiance 

pattern can be also investigated [14,15]. Therefore, Eq. (3) allows us to characterize both the 
spectral and focusing behavior of circularly symmetric binary DOEs under pulsed 
illumination [15,16]. 

Based on Eq. (1) we derive an analytical expression for the total diffraction field, 

( ), ,
time

U z R t , in the time domain. To do that, the spatio-temporal coupling of the field due to 

the frequency-dependent diffracted field is taken into account by means of the following 
inverse Fourier transform 

 ( ) ( ) ( ) ( )1
, , , , exp

2timeU z R t A U z R i t dω ω ω ω
π

∞

−∞

= −∫   (4) 
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The term ( )A ω  is the spectral amplitude of the incident pulse ( ( ) ( )
2

0S Aω ω= ), which is 

related to the temporal amplitude of the same pulse, ( )u t , by the Fourier transform 

 ( ) ( ) ( )expA u t i t dtω ω
∞

−∞

= ∫   (5) 

After substituting corresponding expressions for ( ), ,U z R ω  and ( )A ω  into Eq. (4), and 

carrying out some mathematical manipulations, one can obtain the following expression 

 ( ) ( ) ( )
1

, , , , , ,
N

time im om

m

U z R t F z R t F z R t
=

= −∑   (6) 

Where, 

 ( )
2 2 2

/ /
/ 2 2 2 2

0/ /

1 cos
, ,

2
im om im om

im om

im om im om

z rz r R
F z R t u t d

cz r c z r

π θ
θ

π

 +
 = − +
 + + 

∫   (7) 

The Eq. (6) is the main analytical result of this manuscript. It is derived within the framework 
of the Rayleigh-Sommerfeld theory of diffraction. Equation (6) holds for points not only on-
axis but also in the close vicinity of the propagation axis. In particular, the validity of Eq. (6) 
for points 200 mµ  away from the propagation axis will be experimentally demonstrated in 
section 5. In determining Eq. (6) no paraxial approximation was assumed, so it can be applied 
as well in near or far field regions. After a visual inspection of Eq. (6) and (7), one sees that 
the total diffraction field ( ), ,timeU r R t  is given by the sum of 2N  boundary wave pulses 

coming from the edges of the transparent rings. In the particular case of having a central 
transparent zone ( 1 0ir = ) a geometric wave pulse appears, consequently 

( ) ( )1 , , /iF z R t u t z c= − . Apart from the weighting factor 2 2 1/2
// ( )im omz z r+ , the field 

amplitude of the boundary wave pulses is equal to that of the incident pulse ( )u t . However, 

due to the dependence of the argument ξ  in the function ( )u ξ  on the coordinates z , R  and 

radii /im omr , the boundary wave pulses do not arrive at the same time to the output plane. At 

this point, the term 2 2 1/2
/( ) /im omz r c+  is the propagation time for a pulse that travels from the 

inner or outer edge of the m -th annular aperture to the on-axis point at the output plane z . 
Starting from the same origin, the propagation time to get to an off-axis point ( 0R ≠ ) is 
approximately determined by adding to the first term a second one given by 

2 2 1/2
/ /cos / [ ( ) ]im om im omr R c z rθ +  in the argument of the function ( )u ξ . Note that the azimuthal 

average through the angle θ  takes into account propagation times lower and greater than 
2 2 1/2

/( ) /im omz r c+  because of the factor cosθ . This corresponds with the fact that for off-axis 

points the circular symmetry is lost. In particular, when 0R = , Eq. (6) reduces to the exact 
solution of the Rayleigh-Sommerfeld on-axis diffraction integral for an ultrashort light pulse 
diffracted by circularly symmetric hard apertures [5]. In this case, it is easy to see that the 
propagation time difference among boundary wave pulses decreases when increasing the 
distance between the output plane and the DOE. From the argument of ( )u ξ  it is also 

apparent that the phase of the boundary wave pulses varies with the propagation distance z . 
In addition, the sum in Eq. (6) indicates that there is a phase difference of π  between two 
boundary wave pulses originated at certain ring aperture. 
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3. Spatio-temporal simulations 

We consider an incident plane-wave pulse with temporal amplitude given by 

( ) ( ) 2 2
0exp exp[ / (4 )]u t i t tω σ= − − , where 0ω  reads for the carrier frequency of the pulse and 

σ  represents its standard deviation width. In this case, the integral term ( )/ , ,im omF z R t  can be 

expressed in the form 

 ( )

2
/ /

0
/

/ 0 02
/ /

exp

, , exp
4

im om im om

im om
im om

im om im om

s s
z i t t

r Rc c
F z R t J

s cs

ω
ω

σ

     − − −            = −     
 
 

  (8) 

Where 2 2
/ /im om im om

s z r= +  is the distance between the inner or outer edge of the m -th annular 

aperture and the on-axis point at the output plane z . To obtain Eq. (8) we assume that 
2 21 / / cosz r R r θ+ >>  in the pulse envelope term 2 2exp[ / (4 )]t σ− . This assumption is 

fulfilled for any set of parameters z , /im om
r r=  and θ , if the values of R  are small enough. 

Consequently, we focus our attention on points in the neighborhood of the propagation axis. 
For most practical applications the above approach is useful because the energy due to 
diffraction is concentrated very close to the z  axis. 

On the other hand, we select a DOE periodic in the squared radial coordinate in which the 
ratio between the areas of the whole period and its transparent part is a positive integer 
number ε . Note that in the case of 2ε =  the areas of opaque and transparent regions are 
equal which coincides with the well-known Fresnel zone plate. The on-axis focusing and 
spectral characteristics of optical elements having 2ε ≠  under ultrashort illumination have 
been investigated [15]. According to previous results, we know that inner and outer radii of 
these optical elements can be determined by the expressions: 1/2[ ( 1)]

im
r p m= −  and 

1/2[ ( (1 1/ ))]omr p m ε= − − , respectively. 
To illustrate the spatio-temporal behavior of the diffracted pulses we made three movies of 

the time evolution of the instantaneous intensity ( ) 2
, ,timeU z R t  at different z , R  intervals, 

always corresponding to spatial regions in the vicinity of the propagation axis. These intervals 
within the near field, Fig. 1(a), Fresnel, Fig. 1(b), and far-field, Fig. 1(c) regions, allow us to 
better understand the interaction process that takes place among boundary wave pulses. 
Regarding this aspect, it is convenient to recall that the temporal shape of the instantaneous 
intensity depends on the distance from the diffractive aperture [5]. The main reason for that is 
the interference among boundary wave pulses during propagation. 

In the paraxial approximation, the axial location of the above regions can be estimated. 
Within this approach, the time difference between two boundary wave pulses coming from the 
edges of an aperture 1t∆  or from neighboring apertures 2t∆  can be calculated, yielding 

1 / (2 )t p czε∆ =  and 2 ( 1) / (2 )t p c zε ε∆ = − , respectively. Besides, owing to the fact that for 

0R =  Gaussian functions ( )/ ,0,im omF z t  never fully decay, a criterion for pulse proximity 

without significant interaction is needed. At this point, we assume 2σ  as the minimum time 
difference to fulfill this criterion. Therefore, the near field region / (4 )z p cεσ<  can be 

determined by the condition 1 2t σ∆ > , the Fresnel region / (4 ) ( 1) / (4 )p c z p cεσ ε εσ≤ ≤ − by 

1 2t σ∆ ≤  and 2 2t σ∆ ≥ , whereas the far-field region ( 1) / (4 )z p cε εσ> −  by 2 2t σ∆ < . For 

the present study the incident ultrashort pulse is characterized by 15
0 2.37 10ω = ×  Hz 

corresponding to a central wavelength of 795  nm, and 12.7σ =  fs to an intensity full width at 
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half maximum of 30  fs. In addition, the design parameters of the DOE were 10N = , 4ε =  

and 23.2 p mm= . In accordance with the above parameters, one can realize that the DOE is 

made up of ten transparent rings, such that the smallest ring radius is 1 0
i

r =  and the largest 

one is 10 5.4 or mm=  . In addition, the ring widths in the squared radial coordinate are the 

same ( 2 2 2/ 0.8 
om im

r r p mmε− = = ). It can be also verified that above defined regions are found 

at 52.3z <  mm (near-field region), 52.3 mm 157.0 mmz≤ ≤  (Fresnel region) and 157.0z >  
mm (far-field region). 

To compare the transverse extension of the diffracted pulses at different regions, the 
sampling interval of R  is fixed to [ ]20 ,  20m mµ µ−  for all movies. In Fig. 1(a), the axial 

interval was limited to [ ]34.980 mm 35.020 mmz∈ . In this case, the time difference among 

boundary wave pulses does not allow significant interaction. So, in the near field the 
instantaneous intensity is composed of one pulse per circular hard edge ( 2N  pulses). Note 
that, due to the central transparent zone of the mask, the first pulse corresponds to the 
geometric wave pulse. In the second movie shown in Fig. 1(b), the axial interval is defined as 

[ ]140.980 mm 141.020 mmz∈ . Within this interval, the time difference 1t∆  has decreased 

and the pairs of two boundary wave pulses coming from inner and outer edges of each 
transparent ring do interact (Fresnel region). The coherent interference of these pulses 
determines the temporal profile of the resulting burst. Depending on the phase difference, the 
temporal profile can be a set of N  single lobes with an inward central ripple, Gaussian-like 
form or flattop profiles [5]. The movie shown in Fig. 1(b) corresponds to the Fresnel region. 
In this case, the instantaneous intensity is made up of a burst of N  pulses having Gaussian-
like structure, instead of 2N  pulses as before. Here it should be recalled that the filling ratio 

2ε ≠  does not allow equal transparent and opaque portions within a period of the mask, but 
the transparent area is lower than the opaque one. Therefore, two pulses originated at a given 
transparent ring of the mask meet before two pulses emitted at different ring apertures. In the 
far-field region, 2t∆  is also lower enough to cause the interaction of all pulses of the burst. In 
this region, the temporal profile will depend again on the phase difference among pulses. For 
instance, in Fig. 1(c) corresponding to an axial interval [ ]202.980 mm 203.020 mmz∈  the 

temporal profile has flattop shape. However, due to the coherent interference among pulses, 
other temporal profiles are possible, e.g. a set of N  Gaussian-like pulses. As far as the 
distance from the mask is further increased, the temporal profile of the instantaneous intensity 
approaches to that of the incident pulse. 

 

Fig. 1. Movies of the spatio-temporal time evolution of the instantaneous intensity at different 
spatial regions a) (2.02 MB Media 1) Near-field region, b) (0.77 MB Media 2) Fresnel region, 
and c) (0.57 MB Media 3) Far-field region. 

4. Experimental setup 

To check the validity of our theoretical model, we performed measurements of the spatio-
temporal amplitude and phase after the DOE. For the experiments, we have used a CPA Ti: 
Sapphire laser (from Amplitude Systems), delivering 30 fs (FWHM) pulses centered at 795 
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nm. The energy we used was low (less than 100 µJ), obtained from attenuation of the beam 
with a variable attenuator (a half-wave plate and a linear polarizer before the CPA 
compressor) and some neutral density filters, in order to perform measurement in linear 
regime. The laser beam passed through a beam splitter plate: the transmitted beam acted as 
reference beam, while the reflected one illuminates the DOE, creating the test pulse. 

The test pulse was characterized by means of Spatio-Temporal Amplitude-and-phase 
Reconstruction by Fourier-transform of Interference Spectra of High-complex-beams 
STARFISH [31]. This reconstruction technique consists of spatially resolved spectral 
interferometry using an optical fiber coupler as interferometer. The experimental setup is 
shown in Fig. 2. The reference and the test beam are collected by each fiber input port. The 
test arm spatially scans the transverse profile and the reference arm controls the relative delay 
between the pulses required for the interferometry (between 2 and 3 ps in the experimental 
conditions of the present study). Both pulses are combined inside the fiber coupler and leave it 
through the output common port that is directly connected to a standard spectrometer (from 
Avantes), where the interference spectra are measured. Notice that this scheme does not 
require collinear test and reference, avoiding the precise alignment of the beams. Also, the 
reference beam is not scanned and its spectral phase is obtained on-axis just by means of a 
SPIDER measurement (from APE). The control of the longitudinal position of the DOE 
allows scanning different propagation distances. 

 

Fig. 2. Experimental setup: one replica of the laser pulse is used as the reference and the other 
replica illuminates the DOE (test beam). The pulses are collected by the arms of the fiber 
coupler, the reference one controls the relative delay, whereas the test one spatially scans the 
test beam. The spatially resolved SI is measured after the fiber coupler in the spectrometer. The 
position of the DOE allows exploring different propagation distances. 

The fiber coupler must be single mode for the whole spectral range, in order to prevent 
pulse distortions. In our case, it means a 4 µm mode field diameter, which gives us a high 
spatial resolution. The two arms of the fiber coupler should have equal length. Slight phase 
differences were calibrated and taken into account through a single spectral interferometry 
measurement using the same input pulse at both fiber ports. 

To reconstruct the test pulse, the information of the spectral interferences is used to obtain 
the spectral phase difference between both pulses (reference and test) by applying the fringes 
inversion algorithm known as Fourier-Transform Spectral Interferometry (FTSI) [32]. Since 
the reference is calibrated with SPIDER, it allows obtaining the spectral phase of the test 
pulse. This information is combined with a separate scan for the test spectrum measurement 
(collecting only the test pulse with the reference blocked), and it is equivalent to the 
knowledge of the temporal amplitude and phase of the test pulse by doing the inverse Fourier-
transform. The extension to spatial domain is achieved by the transverse scan of the test fiber 
port, thus constituting the full characterization of the spatio-temporal (and spatio-spectral) 
amplitude and phase of the beam at certain propagation distance. The spatio-temporal 
coupling is preserved in the measurement because the reference is kept constant, what allows 
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measuring test pulse front structure. In our case, the system presents cylindrical symmetry, so 
we have only scanned in one transverse direction (x-axis), therefore obtaining a reconstruction 
along the radial coordinate. 

For the experiment we select three transverse planes located within the near-field, Fresnel 
and far-field regions defined in the previous section. These are those corresponding to the 
axial positions 35 mmz = , 141 mmz =  and 203 mmz = . Note that the above planes are 
included within the axial sections selected for the movies in section 3. Figure 3 shows the on-
axis irradiance ( )0,I z ω  for the central wavelength of the pulse. With the help of Eq. (3), 

( )0,I z ω  can be derived from the integral ( ) ( )
0

, ,0,I z S z dω ω ω
∞

= ∫ , after setting 0R =  and 

0ω ω= . Note that for the monochromatic case 0ω ω= , the power spectrum of the incident 

pulse ( )0S ω  can be expressed as a Dirac function. Under ultrashort pulsed illumination, the 

on-axis irradiance ( )0,I z ω  gives us a rough estimation of the foci distribution after the DOE. 

The exact irradiance distribution ( ),I z ω  must be numerically calculated using the above 

integral. In Fig. 3, the axial positions of the experimental planes are indicated. The position of 
the first experimental plane, which is located very close to the DOE, was represented alone in 
left part of Fig. 3, because it needs quite more sampling than the last two. In addition, a 
smoothing function was applied in Fig. 3 left. For each plane, several spatio-temporal 
reconstructions have been done in order to obtain an accurate description of the light behavior. 

 

Fig. 3. On-axis irradiance pattern of the DOE for the central wavelength of the pulse. The green 
stars correspond approximately to the positions of the spatio-temporal reconstructed planes at z 
= 35mm, z = 141mm and z = 203mm shown later in Fig. 4, 5 and 6, respectively. 

5. Experimental results 

In Figs. 4-6, the experimental results are shown and compared with the theoretical simulations 
(analytical), corresponding to propagation distances 35 mm, 141 mm and 203 mm. In all 
cases, the theoretical simulations of spatially resolved spectra are shown in subfigures (a), 
meanwhile the spatio-temporal intensity of the pulses in subfigures (b). These figures are 
compared with the corresponding experimental results given in subfigures (c) for 
experimental spatially resolved spectra, and in subfigures (d) for experimental time evolution 
of the pulses. 

In particular, the spatio-temporal structure for the axial position 35 mmz =  after the DOE 
is shown in Fig. 4. There is a very structured spectrum, presenting some sharp peaks. Its 
dependence with the transverse coordinate corresponds to a complex spatio-temporal 
distribution of the beam. In the spatio-temporal domain, each par of two pulses of the train, 
slightly distinguished from the theoretical curve in Fig. 4(b), has approximately 90 fs intensity 
FHWM with a time distance of 150 fs among them. As commented in section 3, this is the 
expected behavior in the near field region, see Fig. 1(a) and movie 1. In the experiment, 
certain pairs of two pulses are poorly visible and some times do not appear. For instance, in 
Fig. 4(d) the contributions to the diffracted field of the geometric wave pulse (direct pulse) 
and the first-arrival boundary wave pulse are indistinguishable. Here, it can be mentioned that 
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in Fig. 3 of reference [30], recorded by SEA TADPOLE technique and corresponding to the 
spatio-temporal electric field distribution after the diffraction of a short pulse by a circular 
hole, both contributions do not overlap. 

The measurement at the plane 35 mmz = , which is very close to the DOE, is difficult to 
accomplish due to the low diffraction energy at the given focus and its small spatial width. In 
addition, it presents another problem: the numerical aperture (NA) of the optical fiber limits 
the coupling of the light for tight-focusing conditions. In this case, taking into account the NA 
provided by the fiber’s manufacturer (NA = 0.11 ± 0.01) and the design parameters of the 
DOE, it can be shown that the number of rings allowed by the NA condition is between 4 (for 
NA = 0.10) and 6 (NA = 0.12). Accordingly, Fig. 4(d) clearly shows four axial pair of two 
pulses. Therefore, in the particular conditions given at the plane 35 mmz = , our 
measurement does not have enough spatial resolution to resolve all pulses within the train. 
Note that those pulses propagating at angles larger than the NA of the fiber do not appear in 
Fig. 4(d). One solution for this problem is given in [28], where Bowlan and associates use 
near-field scanning microscopy probes for improving the performance of the SEA TADPOLE 
technique. Despite of the above-mentioned problem, it is possible to observe a reasonable 
good agreement between theory and experiment in the forward part of the spatio-temporal 
structure. Others discrepancies may come from the assumption of plane-wave illumination 
and the used of an ideal Gaussian spectral distribution. The inclusion of a Gaussian 
illumination or the experimental pulsed light spectrum into the theoretical model implies 
numerical calculus and so, no longer analytical solutions. 

 

Fig. 4. Simulated and experimental spatially resolved spectrum (a, c), and corresponding 
spatio-temporal intensity (b, d) for the propagation distance z = 35mm. 

In Fig. 5, the complex structure observed in Fig. 4 remains when the focus at position 
141 mmz =  is analyzed. The measurements are very symmetric with respect to the center in 

the radial direction. The spatially resolved theoretical and experimental spectra in Fig. 5(a) 
and 5(c), show a maximum located within 10 µm around the optical axis. The off-axis spectral 
contribution appears in a structured way. This is translated to the spatio-temporal field as a 
complex distribution (Fig. 5(b), theoretical and 5(d), experimental), presenting a train of 10 
pulses (one per ring of the mask) of about 16 fs intensity FWHM and 38 fs from peak to peak. 
Off-axis the different pulses forming the train after the main peak front exhibit divergent 
structure. The agreement between simulation and theory is notable. 
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Fig. 5. Simulated and experimental spatially resolved spectrum (a, c), corresponding spatio-
temporal intensity (b, d) for the propagation distance z = 141mm. 

The characteristics of the pulse at the plane 203 mmz =  are shown in Fig. 6. Here, some 
features observed for the plane 141 mmz =  remain, while important differences appear. In 
the spatio-spectral domain, a main central peak and the wings are still observed presenting x-
shape, as seen in Fig. 6(a) and (c). In the spatio-temporal domain shown in Fig. 6(b) and (d), 
the pulses from the former train (see Fig. 4 and 5) now merge into a broad central pulse of 250 
fs intensity FWHM, shorter than the former pulse train, but longer than the input pulse. Off-
axis, it is possible to see a wing structure, still preserving the train pulse structure. This 
behavior is caused by the lower angle of the light converging to this longer focus, since the 
time difference between the central and the outermost rings of the DOE is reduced. 

Finally, it should be pointed out that in comparison with the theoretical spatio-temporal 
distributions, experimental results given in Fig. 4(d), 5(d) and 6(d) show a slightly temporal 
pulse broadening. We believe that this is mainly caused by dispersion of the short pulse while 
passing through the DOE material (quartz). 

 

Fig. 6. Simulated and experimental spatially resolved spectrum (a, c), corresponding spatio 
temporal intensity (b, d) for the propagation distance z = 203mm. 
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6. Conclusions 

A physical model based on Rayleigh-Sommerfeld theory of diffraction useful for studying the 
pass of an ultrashort pulse by any circularly symmetric amplitude DOE has been developed. It 
contains analytical expressions that allow for a fast and accurate description of the diffraction 
phenomenon both in the spatio-spectral and spatio-temporal domains. Full experimental 
reconstructions of spatio-spectral and spatio-temporal field distribution at different 
propagation positions have been carried out with fiber coupler spectral interferometry 
(STARFISH). The results of measurements showed the complex spatio-temporal structure of 
the field near several foci of the DOE, observing different behaviors for the near, Fresnel and 
far-field regions. The agreement between theory and experiment is quite good. 
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