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ABSTRACT: 

We present a simplified model for the simulation of Second Harmonic Generation (SHG) with 
two fundamental beams that propagate in different directions: non-collinear SHG. In spite of its 
simplicity (diffraction is not included and the slowly varying envelope approximation in space is 
assumed) it can be used in many realistic situations. It has been implemented on Mathematica and 
is freely available to the reader. Beam-shape effects, conversion efficiencies, input intensity, 
phase-matching and other parameters can be studied with our code in a virtual experiment. We 
have applied the model to SHG of 1064 nm radiation in KDP crystal as an example. 

Key words: Nonlinear Optics, Second Harmonic Generation, Non-Collinear, Simulation. 

RESUMEN: 

Se presenta un modelo sencillo para la simulación de la Generación de Segundo Armónico (SHG) 
en el caso en que los dos haces fundamentales se propagan en distinta dirección: SHG no colineal. 
A pesar de su simplicidad (no incluye difracción y se asume aproximación de envolvente 
lentamente variable en el espacio), se puede usar en muchas situaciones realistas. Se ha 
implementado en Mathematica y está disponible para el lector. En un experimento virtual, nuestro 
código permite estudiar efectos de perfil del haz, eficiencia de conversión, intensidad de entrada, 
ajuste de fases y otros parámetros. Como ejemplo, hemos aplicado el modelo a la SHG de 
radiación de 1064 nm en un cristal KDP. 

Palabras clave: Óptica No Lineal, Generación de Segundo Armónico, No Colineal, Simulación. 
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1. Introduction 

Nonlinear processes have been broadly studied in 
different areas of physics. In particular, Second 
Harmonic Generation (SHG) is one of the most 
basic processes in nonlinear optics, arising when a 
laser beam intense enough propagates through 
certain optical materials. Since the first studies [1-
2], SHG has attracted a lot of interest due to the 
possibility to generate laser beams oscillating at 
new frequencies otherwise unavailable. Frequency 
doubling of laser beams is nowadays a very well 
established technique that is used for many 
practical applications. The simplest experimental 
setup involves only one incident fundamental beam 
that converts its frequency to the second harmonic 
(collinear SHG). In practice, only a few materials 
are convenient for SHG because of the propagation 
effects: the incident laser (at the fundamental 
frequency) and the second harmonic beam (with 
frequency two times that of the fundamental) will 
propagate, in general, with different phase 
velocities due to the dispersive properties of the 
nonlinear medium. This mismatch of the phase 
velocities is responsible for the destructive 
interference of the second harmonic waves 
generated at different points of the propagation 
direction that finally kills the generated second 
harmonic at a given propagation length. As it has 
been widely studied, the condition on the same 
phase acquired during the propagation (known as 
phase matching) is necessary to have efficient 
frequency conversion. Nowadays the concept of 
phase matching is experimentally settled by using 
different polarizations in anisotropic materials (the 
ordinary and the extraordinary, playing with the 
crystal axes orientation respect to the propagation 
to match their indexes), quasi-phase-matching [3] 

or the geometries where several (non-collinear) 
fundamental beams are involved [4]. 

In the non-collinear SHG the angle between 
beams can be used to achieve the phase matching, 
as will be seen below, which opens an alternative to 
the use of anisotropic crystals. The use of non-
collinear geometries is thus necessary in many 
practical situations. For instance, it allows the 
intrinsic spatial separation of the fundamental and 
the second harmonic because they propagate in 
different directions (the SHG can be easily selected 
with a diaphragm). In more complex experiments, it 
can play the role of a spectrometer since it select a 
wavelength for each length when working with 
thick crystals. Moreover, if studying other second 
order nonlinear processes (such as sum or 
difference frequency generation), it is common 
having mandatory non-collinear configurations. 

In many situations of interest, the theoretical 
study of the process requires numerical simulation. 
Many sophisticated models of SHG from 
continuous beams to ultra-short pulses have been 
developed in this context leading to successful 
results when comparing to experiments. Both 
collinear and non-collinear cases have been solved 
including all kind of corrections, for instance 
diffraction, dispersion of the refractive index or 
group-velocity dispersion. The concept of phase 
matching has been deeply studied and understood. 
Most of these sophisticated models are very 
computationally demanding and hardly accessible 
because of its complexity. On the other side, SHG 
with monochromatic and collinear plane waves can 
be described in a straightforward way under certain 
approximations, as it is done in most reference 
books [5-7]. More advanced books describe more 
complex processes and situations [8]. In this sense, 
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analytical expressions can be obtained assuming 
perfect phase matching or in the low conversion 
limit (undepleted pump). However, to our 
knowledge, there is a wide gap between SHG with 
plane monochromatic waves and more realistic 
cases. 

The aim of this paper is to present an easy way to 
analyze SHG for monochromatic waves 
considering transverse effects and non-collinear 
geometries (the spatial profile of the two 
fundamental input beams is arbitrary). As in most 
of the numerical models, the slowly varying 
envelope approximation (SVEA) in space is 
assumed. Although it is fundamental, the effect of 
diffraction is not included in the propagation 
because of the characteristics of the model. 
However, it can be thought to be realistic in many 
practical situations where large unfocused (or 
loosely focused) beams are involved, beams that are 
nowadays available with intensity large enough to 
produce frequency conversion. Thus, we will 
assume that the beam propagates without 
divergence along the crystal length (typically with 
thicknesses of about a few millimeters). The model 
is freely available (attached to the publication) and 
can be easily modified by introducing different 
transverse modes (Laguerre-Gaussian and Hermite-
Gaussian beams [9]), peak intensities, length and 
nonlinear susceptibility of the crystal and other 
parameters. The algorithms could be also extended 
to pulsed beams, but taking into account the time 
dependence is far from the scope of this work.  This 
method is much simpler than other models used in 
investigation including all relevant effects both in 
time and in space, but on the contrary, it is simple, 
transparent, it can be fast understood and used in 
many situations, yielding meaningful results. 
Moreover, it gives us the chance of checking 
different inputs when trying to get a certain output. 
The problem equations are proposed including the 
first nonlinear term of the polarization (quadratic 
effects). After manipulations we found three 
coupled equations in first order partial derivatives. 
Therefore, we adapted standard numerical 
algorithms to integrate such equations where the 
field is propagated in subsequent planes. 

Due to the relevance of nonlinear optics in many 
applications, the inclusion of simple experiments in 
undergraduate laboratories is becoming more and 
more important [10,11]. The model and the 
software presented in our work are proposed to be a 

virtual experiment on nonlinear optics very suitable 
for undergraduate level. The students are expected 
to learn the mentioned fundamental concepts of 
nonlinear optics and to familiarize with simulation 
and numerical algorithms. An undergraduate level 
of optics is required in the students before using 
this material. 

 

2. Phase matching in uniaxial crystals 

The most common procedure for achieving phase 
matching in SHG is to make use of the 
birefringence (dependence of the refractive index 
on the direction of polarization) of anisotropic 
crystals. In particular, uniaxial crystals like KDP 
(KH2PO4), are widely used in this context. In this 
section, we briefly discuss the general physics of 
uniaxial crystals applied to achieving phase 
matching for SHG. The particular case of a KDP 
crystal used to generate the second harmonic of a 
λω=1.064 µm laser beam (λ2ω=0.532 µm) will be 
given as example. 

In non-collinear geometries, the two fundamental 
waves will be assumed to propagate inside the 
crystal with angles ±α respect to the z-axis (without 
loss of generality), in the plane x-z, thus resulting in 
second harmonic beam propagating along the z-axis 
as it can be seen in Fig. 1 (note that outside the 
crystal both fundamental beams will propagate with 
a larger angle respect to the z-axis in agreement 
with Snell’s law). 

 
Fig. 1. Geometry involved in the non-collinear SHG. 

The diagram of Fig. 1 shows, in fact, the phase 
matching condition for any parametric process like 
SHG: the sum of the wave vectors of the incoming 
(fundamental) waves must be equal to the wave 
vector of the generated wave (second harmonic), 
that is k2ω=kω++kω−. From this vectorial condition 
we get k2ω=cosα (kω++kω−) and finally the 
following condition for the refractive indices: 
2n2ω=(kω++kω−)cosα. It can be experimentally 
achieved by choosing a suitable angle α in non-
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collinear SHG or by matching the fundamental and 
second harmonic indexes in collinear SHG thanks 
to the material birefringence. Both cases will be 
discussed below. 

Uniaxial crystals are characterized by having a 
particular axis with different refractive index, 
known as the optic axis of the crystal. This causes 
that a plane wave will propagate with different 
refractive index depending on the direction of 
propagation of the phase (given by its wave vector 
k
r

). In these crystals, light can propagate with two 
different behaviours: ordinary and extraordinary. 
The ordinary wave, polarized in the plane 
orthogonal to the optic axis (isotropy plane), travels 
with a refractive index no, whereas the effective 
refractive index for the extraordinary wave (with 
polarization perpendicular to the ordinary wave) 
depends on the propagation direction (see, for 
instance, [6,7]) 
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where θ is the angle between the wave vector and 
the optic axis, and the indexes nz and no are the 
principal values of the refractive indexes of the 
crystal. Notice that we have called nz=ne(θ=90º), 
the refractive index for the extraordinary wave 
when its phase propagates perpendicular to the 
optic axis of the crystal. On the other hand, when 
the angle is θ=0º (parallel to the optic axis), the 
extraordinary index is no and the wave propagates 
like the ordinary one. As a result, the ordinary and 
the extraordinary waves have different polarization. 

In the particular case of KDP, the principal 
values of the refractive indices for λω=1.064 µm 
and λ2ω=0.532 µm can be calculated from the 
Sellmeier equations [12]: 
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Depending on the role played by the fundamental or 
the second harmonic, two types of phase matching 
are defined. When both fundamental waves are 
ordinary or extraordinary, the phase matching 
process is named type-I. When the fundamental 
waves have the opposite polarization (one is 
ordinary and the other extraordinary), the phase 
matching process is named type-II.  

We will focus our work on type-I phase matching 
with both fundamental waves having ordinary 
polarization (thus, the generated second harmonic 

will be extraordinary). The optic axis of the crystal 
will be contained in the plane defined by the 
direction of propagations of the waves. Due to 
birefringence, the wave vector and the energy 
(Poynting vector) of the extraordinary wave (the 
second harmonic) will propagate inside the crystal 
along slightly different directions [6,7,12]. The 
angle between phase and energy propagation is 
named walk-off angle and can be calculated from 

 θ−θ=θ ω− 2offwalk , (3) 

with θ2ω defined as θ=θ −
ωωω tantan 2

2,

2

2,2 zo nn . 

The nonlinear effect is produced by a non-zero 
second order susceptibility χ(2) in the material 
giving induced nonlinear polarization. The 
nonlinear propagation increases with this 
susceptibility, which is responsible for the SHG. 
Typically, the effective nonlinear coefficient deff 
defined as 2deff=χ(2) is used instead. 

The effective nonlinear coefficient deff of the 
frequency conversion depends on the experiment 
geometry and it is related to the known parameters 
of the crystal. The expression in a crystal class 
42m (point group) is the following [13] 

 ( ) ( )−ω+ωω φ+φθ−= sinsin 236ddeff . (4) 

where θ2ω is the angle between the optic axis of the 
crystal and Poynting vector of the second harmonic 
wave, and φω+ is the azimuthal angle of the wave 
Eω+ respect to the crystal axes starting at positive x-
axis. We assume that the crystal has been cut in the 
best situation to produce nonlinear second order 
effects, that is, when the azimuthal angles with the 
crystal axes are φω+=φω−=π/4. 

The nonlinear coefficient is taken from the 
literature [12] and is d36(1.064 µm)=0.39 pm/V. 
Since we are working in the CGS system of units, 
we have to convert it to the appropriate units using 
the ratio 1 statVolt=299.8 V, thus the coefficient 
used is d36=1.17×10−8 cm/statVolt. 

First of all, in the non-collinear SHG, we use the 
angle between incident beams directions to achieve 
the phase matching condition (or at least small 
phase mismatch experimentally) so we can obtain 
the phase matching angle αPM given by 
cosαPM=ne,2ω(θ)/no,ω. Moreover, we consider that 
the optic axis angle of the crystal is θ=90º because 
the effective nonlinear coefficient will be the 
maximum and the second harmonic (extraordinary 
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wave) will not have walk-off (see Fig. 2(a)). Then, 
the desired parameters are: 
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Fig. 2. Optic axis (O.A.) orientation and beam 
propagation direction in non-collinear (a) and collinear 
(b) geometry. The walk-off angle gives the direction of 
Poynting vector for collinear second harmonic (due to the 
particular choice of the O.A. orientation in the non-
collinear setup the walk-off is zero in this case.) The 
indices shown in the scheme represent the refraction 
indices experienced by each wave. 

Concerning the collinear situation, the variable 
used to reach collinear phase matching is the angle 
of the optic axis respect to the propagation (see Fig. 
2(b)). Since we are solving type I generation where 
the extraordinary wave is second harmonic, the 
angle can be calculated from the phase matching 
condition ( ) 2

,
2

ω=θ o
PM
colle nn , and is given by [7] 
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Assuming again that the crystal has been 
designed in the most favourable situation, we have 
φω+=φω−=φω=π/4 and the angle of the optic axis is 
PM
collθ , so the parameters take the values 
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In this case, the second harmonic has an angular 
walk-off θwalk-off=1.604º, calculated from Eq. (3). 
We have kept a precision of 0.001º for the angles in 
these calculations just for convenience. The 
precision required in lab experiments for the angles 
is difficult to assess provided that it is strongly 
dependent on several parameters as the 
monochromaticity of the fundamental wave, the 

divergence of the beam or the crystal length (in 
standard goniometers the precision is usually much 
smaller, typically 0º10 ' 0.17º= ). 

If the phase matching condition is not exactly 
satisfied, the power of the generated second 
harmonic signal will dramatically decrease. This 
effect is accounted for through the phase mismatch, 
defined as ω−ω+ω −+=∆ 2kkkk

rrrr
, that projected 

along the propagation direction of the second 
harmonic gives ∆k=kω+cosα+kω−cosα−k2ω. It can 
be shown [6,7] that, in the low conversion limit 
(undepleted pump) in collinear geometry and 
considering plane monochromatic waves, the SHG 
intensity depends with the phase mismatch as 

 ( ) 








π

⋅∆
⋅⋅∝ ωω

2
sinc0 222

2

Lk
LII , (8) 

where L is the crystal length (fixed), Iω(0) is the 
fundamental intensity input and the sinc-function is 
defined as sinc(x)=sin(πx)/(πx). This function has 
a maximum when ∆k=0 and oscillates between 
zero and secondary maxima (see Fig. 3). The first 
zero around the main maximum appears at 
∆k=±2π/L. For a given SHG geometry with perfect 
phase matching, if the wavelength of the 
fundamental beam or the phase matching angle 
slightly changes, then ∆k changes accordingly and 
the conversion efficiency decreases. Since the first 
zero position is proportional to L−1, the spectral and 
angular admittances (range of wavelengths and 
phase matching angles for which the SHG 
efficiency drops to 0.5 of the maximum value) are 
larger for shorter crystal lengths. On the other hand, 
the efficiency is also proportional to L2, so the 
optimum crystal length for a given experiment must 
be found as a commitment between efficiency and 
admittances. Finally, notice that the SHG intensity 
depends on ( )02

ωI , so it increases nonlinearly (as 
expected) with the fundamental intensity. An 
analogous expression to Eq. (8) can be found for 
non-collinear SHG and, therefore, the above 
considerations can be extended to this case. 

 

3. Model 

3.a. Fields and set out 

The proposed problem has been set out considering 
incident beams with arbitrary transverse modes and 
a defined propagation direction in the crystal, so we 
have to solve equations with the three spatial 
variables.  
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Fig. 3. Second harmonic intensity as a function of the 
phase mismatch: sinc-function. 

In order to simplify the final expressions of the 
equations, we define εεεεω± (fundamental beams 
corresponding to angles ±α, see Fig. 1) and εεεε2ω (the 
second harmonic) as the complex envelopes of the 
fields (that is, the electric fields except for the 
temporal and the rapidly oscillating spatio-temporal 
phase) that only depend on the position r={x,y,z}: 
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In the particular case of collinear SHG the angle is 
α=0, condensing the definitions in  
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3.b. Equations obtaining 

In this study, we do not regard the vectorial 
character of the electric field, assuming that each 
field has the correct polarization according to the 
phase-matching conditions in the crystal (necessary 
in anisotropic materials). We will consider only 
type-I phase matching that means that the two 
fundamental beams have the same polarization, but 
can be directly extended to other cases. The system 
of units used is the CGS. We consider Maxwell’s 
equations including the first nonlinear term 
associated to the second order susceptibility χ(2), 
which is the responsible for the SHG. The resulting 
wave equation is 
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where c is the speed of light. The dielectric 
permittivity ε=1+χ(1) includes the first order 
susceptibility χ(1) arising from the linear 
polarization term. In our scope, we have an 
equation for each wave with its corresponding 
nonlinear polarization term PNL. In the non-

collinear case, the nonlinear polarizations are given 
by [7]: 
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The second order susceptibility takes different 
values depending on the mix-frequency processes 
that it involves. From this moment, we define the 
second order susceptibility for the SHG process as 
χ(2)≡χ(2)(ω,ω→2ω). Obviously, it has been 
considered as a number not as a tensor (in 
anisotropic materials it is a tensor, but an effective 
scalar value is always used). 

In the collinear interaction we consider that the 
fields Eω+ and Eω− degenerate in only one called 
Eω. Since it is physically necessary that the 
intensity of this wave is the sum of the fundamental 
non-collinear intensities when α=0 (being each of 
that half the total intensity), the amplitude of the 
collinear fundamental wave will be the same except 
for a factor equal to the root square of two. This is 
the reason why the coefficient two disappears in the 
nonlinear polarization oscillating at double 
frequency (it is absorbed in the field amplitude): 
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Then, we introduce these considerations in the 
wave equations for the ω and 2ω fields, and we 
assume the following main approximations. The 
first assumption is the slowly varying envelope 
approximation (SVEA) in space. It consists of 
neglecting the second order spatial derivative of the 
envelopes along the propagation direction. It can be 
assumed in most of the situations in which 
homogeneous media are involved and no interface 
is present in the propagation. The second one 
supposes that the diffraction is negligible in the 
propagation length. It is reasonable for short 
propagation lengths and “soft” beam-shapes. This 
approach also implies that beams propagate without 
being strongly focused. The resulting equations that 
we have solved both in the non-collinear case and 
the collinear one are: 
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where we have defined the phase mismatch 
( ) ωω −α=∆ 2cos2 kkk . The full derivation of the 

propagation equations can be found at the header of 
the Mathematica script. Notice the high symmetry 
of the equations involving the envelopes. The three 
coupled equations can be particularized to the 
collinear generation: 
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It is fundamental to realize that the sources of the 
nonlinear processes (the right-hand side of the 
equations) are modulated by a phase including the 
phase mismatch ∆k. When this quantity is zero, 
both fundamental and generated waves propagate 
with the same phase velocity projection along the z-
axis giving constructive interference. This is 
exactly the mentioned condition on the propagation 
velocity of the waves (phase matching condition), 
which implies the relation n(ω)cos(α)=n(2ω). The 
nonlinear polarization terms are the source of the 
fields and become from the three essential 
processes that can produce the waves mixing in all 
possible directions, because the nonlinear process is 
reversible and depending on the phase matching 
conditions it can be energy returning to the 
fundamental waves from that converted to second 
harmonic (down-conversion). 

We have dependence on the three spatial 
variables in the envelopes, but it is possible to 
recover the plane wave case assuming that the 
envelopes only depend on the z-coordinate. This 
problem has been solved in classical textbooks as 
Zernike et al [5] and many more since then. As it 
has been said in that simplified situation, analytical 
expressions can be found under certain conditions. 

 

4. Solving method 

4.a. Basic considerations 

The final equations form a system of coupled 
equations in partial derivatives of first order. The 
philosophy of the algorithm is always to calculate 
the field distribution in a complete plane z=z0+∆z 
using the values of the electric-fields in the 
previous plane z=z0. The crystal is sampled in a 
three-dimensional Cartesian grid. At the beginning, 
we used the Euler’s method [14] of first order 
f(x0+∆x) ≈ f(x0)+∆x[∂f(x0)/∂x], which can be easily 
applied to the field propagating along the z-axis. 
However, the derivatives of the incident beams (the 
fundamental beams) are with respect to a 
combination of the variables x and z. The way to 
propagate these fields is by means of the integration 
of the z-derivative (in the z-direction) and 
numerical approximation of the x-derivative as 
∂f(x0)/∂x ≈ [f(x0+∆x)−f(x0)]/∆x. The numerical 
integration of the equations is given by: 
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______________________________________________ 

The effective nonlinear coefficient deff is 
commonly used instead of the second order 
nonlinear susceptibility 2deff≡χ(2). The fields have 
been made adimensional dividing by the envelope 
peak of one incident beam. Moreover, the 
procedure was improved in the non-collinear case 
by substituting the first order method for the second 
order Modified Euler’s Method [14] (also known as 
trapezoidal formula [15]). To even more increase 
the accuracy without needing denser sampling (and 

longer calculation times), we use the 4th order 
Runge-Kutta method in the collinear case [14].  

The beam width parameter (in the calculation) is 
taken to be high enough to completely include the 
transverse distribution of energy for both 
fundamental beams. 

4.b. Initial conditions 

We choose z as the direction in which the second 
harmonic beam propagates, being x the direction 
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containing the other component of the non-collinear 
beams and y the transverse direction. Before 
solving the differential equations that govern the 
process, we have to define the initial conditions, 
that is, the values of the electric fields at the 
beginning of the crystal (z=zmin) for the whole 
transverse plane (initialize the fields). We consider 
that in the plane z=zmin only exits fundamental 
field. Although this is not a necessary condition that 
can be changed by the user, not having second 
harmonic input is the most common situation. 
Furthermore, in non-collinear SHG we need to 
change the coordinates from the incident beams 
intrinsic system to the coordinates described above 
and then impose the initial conditions at z=zmin. We 
use Laguerre-Gaussian or Hermite-Gaussian beams 
[9] as input. 

4.c. Control of the accuracy 

In spite of implementing second and fourth order 
numerical methods, we must be very careful with 
the choice of the sampling in order to ensure the 
accuracy of the solution. The step size in z-direction 
must be small enough to avoid divergence in the 
Euler’s method. This is roughly given by the 
condition: 

 ,
max

)2( εχ
<<∆

l
z  (17) 

where we have used the definition 
l=c2kωcosα/4πω2 and εmax is the maximum value of 
the electric field reached at a certain point of the 
spatial sampling. Therefore, we know that the 
product between the adimensional magnitude 
χ(2)εmax and the step ∆z/l will play the role of the 
necessary condition for the integration. 

Additionally, the accuracy achieved by the 
calculation can be checked by testing the electric 
energy of the interacting waves. The total energy is 
proportional to 
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and must remain constant from a z-plane to the 
following one. Due to the interference term 
between the two fundamental beams (note that they 
have the same polarization because type-I phase 
matching is considered) the total energy oscillates 
in the x-direction but its integral gives an average 
that is a constant. The period of such oscillations is 

π/(kωsinα), so we can check if the resolution of the 
sampling is high enough to describe it. 

The total energy conservation is verified during 
the calculation and, if the step is not small enough, 
the program sends us a warning message to abort 
evaluation because calculations will be wrong. The 
conservation error limit is set by default to 1% from 
initial energy, but it can be manually changed. 

 

5. Application to Second Harmonic 
Generation in KDP 

5.a. KDP crystal and beam parameters 

In order to show an application of the model, we 
use as incident beams the output of the Nd:YAG 
laser, with a fundamental wavelength λω=1064 nm 
in the infrared and the green second harmonic 
λ2ω=532 nm. This conversion is very often used. 
Nd:YAG lasers produce pulses of typically few 
nanoseconds. The study of SHG with 
monochromatic waves is thus justified due the very 
long pulse duration. 

The calculation of the optimum parameters of the 
non-collinear and collinear SHG is explained in 
detail in Section 2. The simulation considers type I 
generation. In non-collinear conversion, we assume 
that the angle of the optic axis respect to the second 
harmonic propagation is θ=90º. Such an angle 
means that the optic axis is perpendicular to the 
plane containing the three interacting beams (plane 
x-z). The refractive indexes are no,ω=1.4942 and 
ne,2ω(θ)=nz,2ω=1.4709, and the non-collinear angle 
for phase matching is αPM=10.132º. The effective 
nonlinear coefficient results deff=−1.17×10−8 
cm/statVolt. 

On the other hand, in collinear generation the 
phase matching condition imposes θ=41.3º and 
ne,2ω(θ)=no,ω=1.4942. The effective nonlinear 
coefficient is deff=−7.95×10−9 cm/statVolt. 

We obtain the maximum value of the complex 
envelope module for the incident beams from the 
peak intensity of the beams in the air. Then, we 
must convert it to CGS units 
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where we have considered the difference between 
the complex amplitude (that we use in the model) 
and the real field. 

5.b. Non-collinear SHG with Gaussian beams 

The fundamental waves are the Gaussian beams 
(mode 00 of the Laguerre-Gaussian beam [9]). In 
the non-collinear interaction, the point where 
fundamental beams crosses is taken as the origin of 
coordinates, and the problem is solved in a 
symmetric region containing the superposition zone 
where the nonlinear process takes place. Thus, the 
computation volume is determined from the 
incident beams width and the non-collinear angle α. 
The crystal dimensions in centimeters are 
(0.28, 0.14, 0.8) , respectively to (x,y,z)-directions, 
corresponding to a beam width 0.141 cm, and the 
integration step used is ∆z=0.01 cm (ensuring the 
accuracy). The centers are separated a distance 
0.143 cm (the product of the crystal length by 
tanα) at the entrance of the crystal. The peak 
intensity value is Imax=6×107 W/cm2, which implies 
|εω±|max=709.2 statVolt/cm2 according to Eq. (19). 
We intentionally use a non-collinear angle slightly 
different from αPM, so there is a small phase 
mismatch ∆k=5.5×10−6 cm−1. The program 
implemented on Mathematica is attached to the 
online publication as Media 1. 

In Fig. 4 the total energy of the three interacting 
waves is shown along the crystal (it is integrated in 
the y-direction). The centre of the two fundamental 
beams (propagating with angles ±α) crosses at z=0 
and interference fringes can be seen where 
fundamental beams overlap, as predicted in Eq. 
(18). The interaction between both beams generates 
a second harmonic beam that propagates along the 
z-axis. As the two fundamental beams separate they 
carry much less energy due to the conversion to 
SHG. 

The outputs of the program are the electric-field 
distributions over the whole sampling. Intensities, 
energies and phase-maps are calculated from these 
fields. We show as example the transverse intensity 
and phase distribution of the second harmonic for 
the parameters given above beam at different 
sections of the crystal in Fig. 5 (the entire video is 
available online as supplementary material: Media 
2). The second harmonic intensity is wider in the y-
direction. This asymmetric shape reflects the 
importance of the superposition zone: since the 
incident beams propagate with opposite x-

components the main spatial superposition between 
both beams is achieved around x=0. Moreover, we 
can learn that the spatial phase varies faster in the y-
direction than the x-direction, and its difference 
increases as the beam propagates. 

 
Fig. 4. Density of total electromagnetic energy integrated 

in y-direction. 
 

 
 
Fig. 5. Intensity (up) and phase (down) of the second 
harmonic at different sections of the crystal. The x-
direction is the vertical axis and the y-direction is the 
horizontal axis. 
 

 
Fig. 6. Transverse distribution of the normalized total 
energy at the beginning of the crystal (left), at the centre 
(middle) and at the end (right). The maximum at the 
centers of the fundamental beams is caused by down-
conversion (due to phase mismatch). The x-direction is 
the vertical axis and the y-direction is the horizontal axis. 
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This is more clearly represented in Fig. 6, where 
transverse distributions (sections at different 
z=constant planes) of the density of total 
electromagnetic energy are plotted (whole video 
attached online: Media 3). The section at the 
beginning of the crystal (left) shows the gaussian 
incident beams because initially there is not second 
harmonic wave. Then, both fundamental waves 
propagate and cross at the centre of the crystal 
(z=0), giving interference fringes near this point. In 
z=0 there is also the generated second harmonic (no 
oscillating contribution). The energy output is the 
remainder of the fundamental beams at the top and 
at the bottom, and the second harmonic leaving the 
crystal at the centre (see also Fig. 4). 

5.c. Collinear SHG for Hermite-Gaussian  

mode 01 

The incident wave is the mode 01 of the Hermite-
Gaussian beams [9], which has a null minimum in 
the line y=0. In this case, the computation region is 
again symmetric respect to the origin of 
coordinates. The crystal length is 0.8 cm, and we 
have chosen a beam width 0.8 cm, and the 
integration step used is ∆z=0.02 cm, which ensures 
the accuracy. The envelopes are normalized respect 
to the value |εω|max=2895 statVolt/cm2  that would 
give peak intensity Imax=109 W/cm2 if it were the 
Hermite-Gaussian mode 00 (gaussian beam). We 
induce a considerable phase mismatch ∆k=0.176 
cm−1 arising from an angle of the optic axis of the 
crystal different from θPM. The Mathematica 
program corresponds to Media 4. 

Transverse sections of second harmonic intensity 
at different positions of the crystal are represented 
in Fig. 7 (video available online: Media 5). The 
phase mismatch causes the change in the direction 
of the energy conversion, alternating from 
fundamental to second harmonic and vice versa. 
Since second harmonic generation is a nonlinear 
process, it occurs faster where the initial electric 
field is higher, leading to an earlier change from up-
conversion to down-conversion at the two maxima 
of the incident beam, which produces the ring 
structure at each lobe of the beam. These 
phenomena have already been simulated with more 
complicated models [16] including diffraction and 
obtaining similar results. 

The effect of the beam shape on phase mismatch 
is clearly shown if we represent the propagation 
along the nonlinear material (section x=0) as seen 

in Fig. 8. The maxima and minima reflect the 
different rates of the conversion (referred to the 
propagation direction z) caused by the initial 
transverse distribution of energy. 

 
Fig. 7. Transverse sections of second harmonic intensity. 
The phase mismatch causes the change in the direction of 
the energy conversion alternating from fundamental to 
second harmonic waves. The x-direction is the vertical 
axis and the y-direction is the horizontal axis. 

 
Fig. 8. Second harmonic intensity at a section x=0. 

 

6. Conclusions 

We have presented an algorithm for non-collinear 
second harmonic generation with monochromatic 
waves. The main assumptions of the model (slowly 
varying envelope approximation in space and 
diffraction negligible) allow a reasonably simple 
treatment of the problem but it remains useful in 
many practical applications. Effects of the 
transverse beam shape, intensity, phase matching, 
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crystal length and nonlinear properties, can be 
easily understood with the code. We propose the 
use of such code as virtual experiment on nonlinear 
optics that could be very suitable for undergraduate 
level. The students are expected to learn 
fundamental concepts of nonlinear optics and to 
familiarize with simulation and numerical 
algorithms. 

The program is not very computationally 
demanding and can be run on typical desktop 
computers without specific hardware requirements. 
This is one of the goals of our simplified model. 
Fast calculations can be done with durations in the 
order of a couple of minutes. 
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